799 research outputs found

    Design and Performance of the mDOM Mainboard for the IceCube Upgrade

    Get PDF
    About 400 mDOMs (multi-PMT Digital Optical Modules) will be deployed as part of the IceCube Upgrade Project. The mDOM’s high pressure-resistant glass sphere houses 24 PMTs, 3 cameras, 10 flasher LEDs and various sensors. The mDOM mainboard design was challenging due to the limited available volume and demanding engineering requirements, like the maximum overall power consumption, a minimum trigger threshold of 0.2 photoelectrons (PE), the dynamic range and the linearity requirements. Another challenge was the FPGA firmware design, dealing with about 35 Gbit/s of continuous ADC data from the digitization of the 24 PMT channels, the control of a high speed dynamic buffer and the discriminator output sampling rate of about 1GSPS. High-speed sampling of each of the discriminator outputs at ~1 GSPS improves the leading-edge time resolution for the PMT waveforms. An MCU (microcontroller unit) coordinates the data taking, the data exchange with the surface and the sensor readout. Both the FPGA firmware and MCU software can be updated remotely. After discussing the main hardware blocks and the analog frontend (AFE) design, test results will be shown, covering especially the AFE performance. Additionally, the functionality of various sensors and modules will be evaluated

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    The James Webb Space Telescope Mission

    No full text
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4 m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5 m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 yr, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19