455 research outputs found

    Table_1_The clinical utility of Nanopore 16S rRNA gene sequencing for direct bacterial identification in normally sterile body fluids.XLSX

    No full text
    The prolonged incubation period of traditional culture methods leads to a delay in diagnosing invasive infections. Nanopore 16S rRNA gene sequencing (Nanopore 16S) offers a potential rapid diagnostic approach for directly identifying bacteria in infected body fluids. To evaluate the clinical utility of Nanopore 16S, we conducted a study involving the collection and sequencing of 128 monomicrobial samples, 65 polymicrobial samples, and 20 culture-negative body fluids. To minimize classification bias, taxonomic classification was performed using 3 analysis pipelines: Epi2me, Emu, and NanoCLUST. The result was compared to the culture references. The limit of detection of Nanopore 16S was also determined using simulated bacteremic blood samples. Among the three classifiers, Emu demonstrated the highest concordance with the culture results. It correctly identified the taxon of 125 (97.7%) of the 128 monomicrobial samples, compared to 109 (85.2%) for Epi2me and 102 (79.7%) for NanoCLUST. For the 230 cultured species in the 65 polymicrobial samples, Emu correctly identified 188 (81.7%) cultured species, compared to 174 (75.7%) for Epi2me and 125 (54.3%) for NanoCLUST. Through ROC analysis on the monomicrobial samples, we determined a threshold of relative abundance at 0.058 for distinguishing potential pathogens from background in Nanopore 16S. Applying this threshold resulted in the identification of 107 (83.6%), 117 (91.4%), and 114 (91.2%) correctly detected samples for Epi2me, Emu, and NanoCLUST, respectively, in the monomicrobial samples. Nanopore 16S coupled with Epi2me could provide preliminary results within 6 h. However, the ROC analysis of polymicrobial samples exhibited a random-like performance, making it difficult to establish a threshold. The overall limit of detection for Nanopore 16S was found to be about 90 CFU/ml.</p

    Serum vitamin D insufficiency is correlated with quadriceps neuromuscular functions in patients with anterior cruciate ligament injury: A preliminary study

    No full text
    Background: This study aimed to investigate the correlations of serum vitamin D insufficiency with quadriceps neuromuscular function in patients with anterior cruciate ligament (ACL) injury. Methods: A cross-sectional study was conducted. Eighteen patients with a primary, unilateral ACL injury who had insufficient serum vitamin D concentrations (<30 ng/ml) were recruited for the study. Bilateral quadriceps neuromuscular function, including maximal strength, the speed of rapid contraction, and inhibition, were measured on an isokinetic dynamometer with the hip and the knee joint flexion at 90° and 45°, respectively. Quadriceps strength was measured by maximal voluntary isometric contractions (MVIC); the speed of rapid contraction was quantified by the rate of torque development (RTD), which was divided into the early (RTD0-50) and the late phase (RTD100-200); quadriceps inhibition was quantified by the central activation ratio (CAR). Serum vitamin D concentration was quantitatively determined by serum 25(OH)D concentration measured by the 25(OH)D ELISA kit. The Spearman rank correlation analysis was used to examine the correlation between the vitamin D concentration and bilateral quadriceps MVIC, RTD0-50, RTD100-200, and CAR, respectively. Results: The results of Spearman rank correlation analyses showed that the serum 25(OH)D concentration was significantly correlated with bilateral quadriceps MVIC (injured: r = 0.574, p = 0.013; uninjured: r = 0.650, p = 0.003) and RTD0-50 (r = 0.651, p = 0.003), and CAR (r = 0.662, p = 0.003) on the uninjured limb. However, no significant correlations were found between the serum 25(OH)D concentration and the other outcomes. Conclusions: The serum vitamin D concentration correlates with quadriceps neuromuscular function in patients with ACL injury who had vitamin D insufficiency

    Table_7_The clinical utility of Nanopore 16S rRNA gene sequencing for direct bacterial identification in normally sterile body fluids.XLSX

    No full text
    The prolonged incubation period of traditional culture methods leads to a delay in diagnosing invasive infections. Nanopore 16S rRNA gene sequencing (Nanopore 16S) offers a potential rapid diagnostic approach for directly identifying bacteria in infected body fluids. To evaluate the clinical utility of Nanopore 16S, we conducted a study involving the collection and sequencing of 128 monomicrobial samples, 65 polymicrobial samples, and 20 culture-negative body fluids. To minimize classification bias, taxonomic classification was performed using 3 analysis pipelines: Epi2me, Emu, and NanoCLUST. The result was compared to the culture references. The limit of detection of Nanopore 16S was also determined using simulated bacteremic blood samples. Among the three classifiers, Emu demonstrated the highest concordance with the culture results. It correctly identified the taxon of 125 (97.7%) of the 128 monomicrobial samples, compared to 109 (85.2%) for Epi2me and 102 (79.7%) for NanoCLUST. For the 230 cultured species in the 65 polymicrobial samples, Emu correctly identified 188 (81.7%) cultured species, compared to 174 (75.7%) for Epi2me and 125 (54.3%) for NanoCLUST. Through ROC analysis on the monomicrobial samples, we determined a threshold of relative abundance at 0.058 for distinguishing potential pathogens from background in Nanopore 16S. Applying this threshold resulted in the identification of 107 (83.6%), 117 (91.4%), and 114 (91.2%) correctly detected samples for Epi2me, Emu, and NanoCLUST, respectively, in the monomicrobial samples. Nanopore 16S coupled with Epi2me could provide preliminary results within 6 h. However, the ROC analysis of polymicrobial samples exhibited a random-like performance, making it difficult to establish a threshold. The overall limit of detection for Nanopore 16S was found to be about 90 CFU/ml.</p

    Table_3_The clinical utility of Nanopore 16S rRNA gene sequencing for direct bacterial identification in normally sterile body fluids.xlsx

    No full text
    The prolonged incubation period of traditional culture methods leads to a delay in diagnosing invasive infections. Nanopore 16S rRNA gene sequencing (Nanopore 16S) offers a potential rapid diagnostic approach for directly identifying bacteria in infected body fluids. To evaluate the clinical utility of Nanopore 16S, we conducted a study involving the collection and sequencing of 128 monomicrobial samples, 65 polymicrobial samples, and 20 culture-negative body fluids. To minimize classification bias, taxonomic classification was performed using 3 analysis pipelines: Epi2me, Emu, and NanoCLUST. The result was compared to the culture references. The limit of detection of Nanopore 16S was also determined using simulated bacteremic blood samples. Among the three classifiers, Emu demonstrated the highest concordance with the culture results. It correctly identified the taxon of 125 (97.7%) of the 128 monomicrobial samples, compared to 109 (85.2%) for Epi2me and 102 (79.7%) for NanoCLUST. For the 230 cultured species in the 65 polymicrobial samples, Emu correctly identified 188 (81.7%) cultured species, compared to 174 (75.7%) for Epi2me and 125 (54.3%) for NanoCLUST. Through ROC analysis on the monomicrobial samples, we determined a threshold of relative abundance at 0.058 for distinguishing potential pathogens from background in Nanopore 16S. Applying this threshold resulted in the identification of 107 (83.6%), 117 (91.4%), and 114 (91.2%) correctly detected samples for Epi2me, Emu, and NanoCLUST, respectively, in the monomicrobial samples. Nanopore 16S coupled with Epi2me could provide preliminary results within 6 h. However, the ROC analysis of polymicrobial samples exhibited a random-like performance, making it difficult to establish a threshold. The overall limit of detection for Nanopore 16S was found to be about 90 CFU/ml.</p

    Table_6_The clinical utility of Nanopore 16S rRNA gene sequencing for direct bacterial identification in normally sterile body fluids.XLSX

    No full text
    The prolonged incubation period of traditional culture methods leads to a delay in diagnosing invasive infections. Nanopore 16S rRNA gene sequencing (Nanopore 16S) offers a potential rapid diagnostic approach for directly identifying bacteria in infected body fluids. To evaluate the clinical utility of Nanopore 16S, we conducted a study involving the collection and sequencing of 128 monomicrobial samples, 65 polymicrobial samples, and 20 culture-negative body fluids. To minimize classification bias, taxonomic classification was performed using 3 analysis pipelines: Epi2me, Emu, and NanoCLUST. The result was compared to the culture references. The limit of detection of Nanopore 16S was also determined using simulated bacteremic blood samples. Among the three classifiers, Emu demonstrated the highest concordance with the culture results. It correctly identified the taxon of 125 (97.7%) of the 128 monomicrobial samples, compared to 109 (85.2%) for Epi2me and 102 (79.7%) for NanoCLUST. For the 230 cultured species in the 65 polymicrobial samples, Emu correctly identified 188 (81.7%) cultured species, compared to 174 (75.7%) for Epi2me and 125 (54.3%) for NanoCLUST. Through ROC analysis on the monomicrobial samples, we determined a threshold of relative abundance at 0.058 for distinguishing potential pathogens from background in Nanopore 16S. Applying this threshold resulted in the identification of 107 (83.6%), 117 (91.4%), and 114 (91.2%) correctly detected samples for Epi2me, Emu, and NanoCLUST, respectively, in the monomicrobial samples. Nanopore 16S coupled with Epi2me could provide preliminary results within 6 h. However, the ROC analysis of polymicrobial samples exhibited a random-like performance, making it difficult to establish a threshold. The overall limit of detection for Nanopore 16S was found to be about 90 CFU/ml.</p

    Table_4_The clinical utility of Nanopore 16S rRNA gene sequencing for direct bacterial identification in normally sterile body fluids.xlsx

    No full text
    The prolonged incubation period of traditional culture methods leads to a delay in diagnosing invasive infections. Nanopore 16S rRNA gene sequencing (Nanopore 16S) offers a potential rapid diagnostic approach for directly identifying bacteria in infected body fluids. To evaluate the clinical utility of Nanopore 16S, we conducted a study involving the collection and sequencing of 128 monomicrobial samples, 65 polymicrobial samples, and 20 culture-negative body fluids. To minimize classification bias, taxonomic classification was performed using 3 analysis pipelines: Epi2me, Emu, and NanoCLUST. The result was compared to the culture references. The limit of detection of Nanopore 16S was also determined using simulated bacteremic blood samples. Among the three classifiers, Emu demonstrated the highest concordance with the culture results. It correctly identified the taxon of 125 (97.7%) of the 128 monomicrobial samples, compared to 109 (85.2%) for Epi2me and 102 (79.7%) for NanoCLUST. For the 230 cultured species in the 65 polymicrobial samples, Emu correctly identified 188 (81.7%) cultured species, compared to 174 (75.7%) for Epi2me and 125 (54.3%) for NanoCLUST. Through ROC analysis on the monomicrobial samples, we determined a threshold of relative abundance at 0.058 for distinguishing potential pathogens from background in Nanopore 16S. Applying this threshold resulted in the identification of 107 (83.6%), 117 (91.4%), and 114 (91.2%) correctly detected samples for Epi2me, Emu, and NanoCLUST, respectively, in the monomicrobial samples. Nanopore 16S coupled with Epi2me could provide preliminary results within 6 h. However, the ROC analysis of polymicrobial samples exhibited a random-like performance, making it difficult to establish a threshold. The overall limit of detection for Nanopore 16S was found to be about 90 CFU/ml.</p

    Table_2_The clinical utility of Nanopore 16S rRNA gene sequencing for direct bacterial identification in normally sterile body fluids.xlsx

    No full text
    The prolonged incubation period of traditional culture methods leads to a delay in diagnosing invasive infections. Nanopore 16S rRNA gene sequencing (Nanopore 16S) offers a potential rapid diagnostic approach for directly identifying bacteria in infected body fluids. To evaluate the clinical utility of Nanopore 16S, we conducted a study involving the collection and sequencing of 128 monomicrobial samples, 65 polymicrobial samples, and 20 culture-negative body fluids. To minimize classification bias, taxonomic classification was performed using 3 analysis pipelines: Epi2me, Emu, and NanoCLUST. The result was compared to the culture references. The limit of detection of Nanopore 16S was also determined using simulated bacteremic blood samples. Among the three classifiers, Emu demonstrated the highest concordance with the culture results. It correctly identified the taxon of 125 (97.7%) of the 128 monomicrobial samples, compared to 109 (85.2%) for Epi2me and 102 (79.7%) for NanoCLUST. For the 230 cultured species in the 65 polymicrobial samples, Emu correctly identified 188 (81.7%) cultured species, compared to 174 (75.7%) for Epi2me and 125 (54.3%) for NanoCLUST. Through ROC analysis on the monomicrobial samples, we determined a threshold of relative abundance at 0.058 for distinguishing potential pathogens from background in Nanopore 16S. Applying this threshold resulted in the identification of 107 (83.6%), 117 (91.4%), and 114 (91.2%) correctly detected samples for Epi2me, Emu, and NanoCLUST, respectively, in the monomicrobial samples. Nanopore 16S coupled with Epi2me could provide preliminary results within 6 h. However, the ROC analysis of polymicrobial samples exhibited a random-like performance, making it difficult to establish a threshold. The overall limit of detection for Nanopore 16S was found to be about 90 CFU/ml.</p

    Table_5_The clinical utility of Nanopore 16S rRNA gene sequencing for direct bacterial identification in normally sterile body fluids.XLSX

    No full text
    The prolonged incubation period of traditional culture methods leads to a delay in diagnosing invasive infections. Nanopore 16S rRNA gene sequencing (Nanopore 16S) offers a potential rapid diagnostic approach for directly identifying bacteria in infected body fluids. To evaluate the clinical utility of Nanopore 16S, we conducted a study involving the collection and sequencing of 128 monomicrobial samples, 65 polymicrobial samples, and 20 culture-negative body fluids. To minimize classification bias, taxonomic classification was performed using 3 analysis pipelines: Epi2me, Emu, and NanoCLUST. The result was compared to the culture references. The limit of detection of Nanopore 16S was also determined using simulated bacteremic blood samples. Among the three classifiers, Emu demonstrated the highest concordance with the culture results. It correctly identified the taxon of 125 (97.7%) of the 128 monomicrobial samples, compared to 109 (85.2%) for Epi2me and 102 (79.7%) for NanoCLUST. For the 230 cultured species in the 65 polymicrobial samples, Emu correctly identified 188 (81.7%) cultured species, compared to 174 (75.7%) for Epi2me and 125 (54.3%) for NanoCLUST. Through ROC analysis on the monomicrobial samples, we determined a threshold of relative abundance at 0.058 for distinguishing potential pathogens from background in Nanopore 16S. Applying this threshold resulted in the identification of 107 (83.6%), 117 (91.4%), and 114 (91.2%) correctly detected samples for Epi2me, Emu, and NanoCLUST, respectively, in the monomicrobial samples. Nanopore 16S coupled with Epi2me could provide preliminary results within 6 h. However, the ROC analysis of polymicrobial samples exhibited a random-like performance, making it difficult to establish a threshold. The overall limit of detection for Nanopore 16S was found to be about 90 CFU/ml.</p

    Long-term survivorship and results in lower limb arthroplasty: a registry-based comparison study

    No full text
    Abstract Introduction Popularity of joint replacement surgery due to ever aging population surges the demand for a proper national joint registry. Our Chinese University of Hong Kong – Prince of Wales Hospital (CUHK-PWH) joint registry has passed the 30th year. The aims of this study are 1) summarize our territory-wide joint registry which has passed the 30th year since establishment and 2) compare our statistics with other major joint registries. Methods Part 1 was to review the CUHK-PWH registry. Demographic characteristics of our patients who underwent knee and hip replacements had been summarized. Part 2 was a series of comparisons with registries from Sweden, UK, Australia and New Zealand. Results CUHK-PWH registry captured 2889 primary total knee replacements (TKR) (110 (3.81%) revision) and 879 primary total hip replacements (THR) (107 (12.17%) revision). Median Surgery time of TKR was shorter than THR. Clinical outcome scores were much improved after surgery in both. Uncemented of hybrid in TKR were most popular in Australia (33.4%) and 40% in Sweden and UK. More than half of TKR and THR patients showed the highest percentage with ASA grade 2. New Zealand reflected the best cumulative percentage survival 20 years after surgery of 92.2%, 76.0%, 84.2% survivorship 20 years after TKR, unicompartmental knee replacement (UKR) and Hip. Conclusion A worldwide accepted patient-reported outcome measure (PROM) is recommended to develop to make comparisons among registries and studies feasible. Completeness of registry data is important and useful to improve surgical performance through data comparisons from different regions. Funding from government on sustaining registries is reflected. Registries from Asian countries have yet to be grown and reported

    Mitochondrial diseases in Hong Kong: prevalence, clinical characteristics and genetic landscape

    No full text
    Abstract Objective To determine the prevalence of mitochondrial diseases (MD) in Hong Kong (HK) and to evaluate the clinical characteristics and genetic landscape of MD patients in the region. Methods This study retrospectively reviewed the phenotypic and molecular characteristics of MD patients from participating public hospitals in HK between January 1985 to October 2020. Molecularly and/or enzymatically confirmed MD cases of any age were recruited via the Clinical Analysis and Reporting System (CDARS) using relevant keywords and/or International Classification of Disease (ICD) codes under the HK Hospital Authority or through the personal recollection of treating clinicians among the investigators. Results A total of 119 MD patients were recruited and analyzed in the study. The point prevalence of MD in HK was 1.02 in 100,000 people (95% confidence interval 0.81–1.28 in 100,000). 110 patients had molecularly proven MD and the other nine were diagnosed by OXPHOS enzymology analysis or mitochondrial DNA depletion analysis with unknown molecular basis. Pathogenic variants in the mitochondrial genome (72 patients) were more prevalent than those in the nuclear genome (38 patients) in our cohort. The most commonly involved organ system at disease onset was the neurological system, in which developmental delay, seizures or epilepsy, and stroke-like episodes were the most frequently reported presentations. The mortality rate in our cohort was 37%. Conclusion This study is a territory-wide overview of the clinical and genetic characteristics of MD patients in a Chinese population, providing the first available prevalence rate of MD in Hong Kong. The findings of this study aim to facilitate future in-depth evaluation of MD and lay the foundation to establish a local MD registry
    corecore