29,545 research outputs found

    Randomly barcoded transposon mutant libraries for gut commensals II: Applying libraries for functional genetics

    No full text
    Summary: The critical role of the intestinal microbiota in human health and disease is well recognized. Nevertheless, there are still large gaps in our understanding of the functions and mechanisms encoded in the genomes of most members of the gut microbiota. Genome-scale libraries of transposon mutants are a powerful tool to help us address this gap. Recent advances in barcoded transposon mutagenesis have dramatically lowered the cost of mutant fitness determination in hundreds of in vitro and in vivo experimental conditions. In an accompanying review, we discuss recent advances and caveats for the construction of pooled and arrayed barcoded transposon mutant libraries in human gut commensals. In this review, we discuss how these libraries can be used across a wide range of applications, the technical aspects involved, and expectations for such screens

    Prevalence of chronic HCV infection in EU/EEA countries in 2019 using multiparameter evidence synthesis

    No full text
    Abstract: Background Epidemiological data are crucial to monitoring progress towards the 2030 Hepatitis C Virus (HCV) elimination targets. Our aim was to estimate the prevalence of chronic HCV infection (cHCV) in the European Union (EU)/European Economic Area (EEA) countries in 2019. Methods Multi-parameter evidence synthesis (MPES) was used to produce national estimates of cHCV defined as: \u3c0 = \u3c0rec\u3c1rec + \u3c0ex\u3c1ex + \u3c0non\u3c1non; \u3c0rec, \u3c0ex, and \u3c0non represent cHCV prevalence among recent people who inject drugs (PWID), ex-PWID, and non-PWID, respectively, while \u3c1rec, \u3c1ex, and \u3c1non represent the proportions of these groups in the population. Information sources included the European Centre for Disease Prevention and Control (ECDC) national operational contact points (NCPs) and prevalence database, the European Monitoring Centre for Drugs and Drug Addiction databases, and the published literature. Findings The cHCV prevalence in 29 of 30 EU/EEA countries in 2019 was 0.50% [95% Credible Interval (CrI): 0.46%, 0.55%]. The highest cHCV prevalence was observed in the eastern EU/EEA (0.88%; 95% CrI: 0.81%, 0.94%). At least 35.76% (95% CrI: 33.07%, 38.60%) of the overall cHCV prevalence in EU/EEA countries was associated with injecting drugs. Interpretation Using MPES and collaborating with ECDC NCPs, we estimated the prevalence of cHCV in the EU/EEA to be low. Some areas experience higher cHCV prevalence while a third of prevalent cHCV infections was attributed to PWID. Further efforts are needed to scale up prevention measures and the diagnosis and treatment of infected individuals, especially in the east of the EU/EEA and among PWID

    A two-frame movie of X-ray induced structural dynamics in single free nanoparticles

    No full text
    International audienceBecause of their high pulse energies, X-ray free-electron lasers (FEL) allow to resolve the structure of individual nanoparticles via coherent diffractive imaging (CDI) within a single X-ray pulse. Since the inevitable rapid destruction of the sample limits the achievable resolution, a thorough understanding of the spatiotemporal evolution of matter on the nanoscale following the irradiation is crucial. We present a technique to track X-ray induced structural changes in time and space by recording two consecutive diffraction patterns of the same single, free-flying nanoparticle, acquired separately on two large-area detectors opposite to each other, thus examining both the initial and evolved particle structure. We demonstrate the method at the extreme ultraviolet (XUV) and soft X-ray Free-electron LASer in Hamburg (FLASH), investigating xenon clusters as model systems. By splitting a single XUV pulse, two diffraction patterns from the same particle can be obtained. For focus intensities of about 2⋅1012 W/cm22\cdot10^{12}\,\text{W/cm}^2 we observe still largely intact clusters even at the longest delays of up to 650 picoseconds of the second pulse, indicating that in the highly absorbing systems the damage remains confined to one side of the cluster. Instead, in case of five times higher flux, the diffraction patterns show clear signatures of disintegration, namely increased diameters and density fluctuations in the fragmenting clusters. Future improvements to the accessible range of dynamics and time resolution of the approach are discussed

    Pneumonia outbreaks due to re-emergence of Mycoplasma pneumoniae

    No full text

    sj-docx-2-ene-10.1177_25148486231221017 - Supplemental material for Don’t waste the crisis: The COVID-19 Anthropause as an experiment for rethinking human–environment relations

    No full text
    Supplemental material, sj-docx-2-ene-10.1177_25148486231221017 for Don’t waste the crisis: The COVID-19 Anthropause as an experiment for rethinking human–environment relations by Amelia Fiske, Isabella M Radhuber, Consuelo FernĂĄndez Salvador, Emilia Rodrigues AraĂșjo, Marie Jasser, Gertrude Saxinger, Bettina M Zimmermann and Barbara Prainsack in Environment and Planning E: Nature and Space</p

    Aerosol emissions from a marine diesel engine running on different fuels and effects of exhaust gas cleaning measures.

    No full text
    The emissions of marine diesel engines have gained both global and regional attentions because of their impact on human health and climate change. To reduce ship emissions, the International Maritime Organization capped the fuel sulfur content of marine fuels. Consequently, either low-sulfur fuels or additional exhaust gas cleaning devices for the reduction in sulfur dioxide (SO2) emissions became mandatory. Although a wet scrubber reduces the amount of SO2 significantly, there is still a need to consider the reduction in particle emissions directly. We present data on the particle removal efficiency of a scrubber regarding particle number and mass concentration with different marine fuel types, marine gas oil, and two heavy fuel oils (HFOs). An open-loop sulfur scrubber was installed in the exhaust line of a marine diesel test engine. Fine particulate matter was comprehensively characterized in terms of its physical and chemical properties. The wet scrubber led up to a 40% reduction in particle number, whereas a reduction in particle mass emissions was not generally determined. We observed a shift in the size distribution by the scrubber to larger particle diameters when the engine was operated on conventional HFOs. The reduction in particle number concentrations and shift in particle size were caused by the coagulation of soot particles and formation/growing of sulfur-containing particles. Combining the scrubber with a wet electrostatic precipitator as an additional abatement system showed a reduction in particle number and mass emission factors by &gt;98%. Therefore, the application of a wet scrubber for the after-treatment of marine fuel oil combustion will reduce SO2 emissions, but it does not substantially affect the number and mass concentration of respirable particulate matters. To reduce particle emission, the scrubber should be combined with additional abatement systems

    Mobilise-D insights to estimate real-world walking speed in multiple conditions with a wearable device

    Get PDF
    This study aimed to validate a wearable device’s walking speed estimation pipeline, considering complexity, speed, and walking bout duration. The goal was to provide recommendations on the use of wearable devices for real-world mobility analysis. Participants with Parkinson’s Disease, Multiple Sclerosis, Proximal Femoral Fracture, Chronic Obstructive Pulmonary Disease, Congestive Heart Failure, and healthy older adults (n = 97) were monitored in the laboratory and the real-world (2.5 h), using a lower back wearable device. Two walking speed estimation pipelines were validated across 4408/1298 (2.5 h/laboratory) detected walking bouts, compared to 4620/1365 bouts detected by a multi-sensor reference system. In the laboratory, the mean absolute error (MAE) and mean relative error (MRE) for walking speed estimation ranged from 0.06 to 0.12 m/s and − 2.1 to 14.4%, with ICCs (Intraclass correlation coefficients) between good (0.79) and excellent (0.91). Real-world MAE ranged from 0.09 to 0.13, MARE from 1.3 to 22.7%, with ICCs indicating moderate (0.57) to good (0.88) agreement. Lower errors were observed for cohorts without major gait impairments, less complex tasks, and longer walking bouts. The analytical pipelines demonstrated moderate to good accuracy in estimating walking speed. Accuracy depended on confounding factors, emphasizing the need for robust technical validation before clinical application. Trial registration: ISRCTN – 12246987

    pH modifies the oxidative potential and peroxide content of biomass burning HULIS under dark aging.

    No full text
    Humic-like substances (HULIS) account for a major redox-active fraction of biomass burning organic aerosols (BBOA). During atmospheric transport, fresh acidic BB-HULIS in droplets and humid aerosols are subject to neutralization and pH-modified aging process. In this study, solutions containing HULIS isolated from wood smoldering emissions were first adjusted with NaOH and NH3 to pH values in the range of 3.6-9.0 and then aged under oxic dark conditions. Evolution of HULIS oxidative potential (OP) and total peroxide content (equivalent H2O2 concentration, H2O2eq) were measured together with the changes in solution absorbance and chemical composition. Notable immediate responses such as peroxide generation, HULIS autoxidation, and an increase in OP and light absorption were observed under alkaline conditions. Initial H2O2eq, OP, and absorption increased exponentially with pH, regardless of the alkaline species added. Dark aging further oxidized the HULIS and led to pH-dependent toxic and chemical changes, exhibiting an alkaline-facilitated initial increase followed by a decrease of OP and H2O2eq. Although highly correlated with HULIS OP, the contributions of H2O2eq to OP are minor but increased both with solution pH and dark aging time. Alkalinity-assisted autoxidation of phenolic compounds and quinoids with concomitant formation of H2O2 and other alkalinity-favored peroxide oxidation reactions are proposed here for explaining the observed HULIS OP and chemical changes in the dark. Our findings suggest that alkaline neutralization of fresh BB-HULIS represents a previously overlooked peroxide source and pathway for modifying aerosol redox-activity and composition. Additionally, these findings imply that the lung fluid neutral environment can modify the OP and peroxide content of inhaled BB-HULIS. The results also suggest that common separation protocols of HULIS using base extraction methods should be treated with caution when evaluating and comparing their composition, absorption, and relative toxicity
    • 

    corecore