84 research outputs found

    Neutron-induced fission cross sections of <math><mmultiscripts><mi>Th</mi><mprescripts/><none/><mn>232</mn></mmultiscripts></math> and <math><mmultiscripts><mi mathvariant="normal">U</mi><mprescripts/><none/><mn>233</mn></mmultiscripts></math> up to 1 GeV using parallel plate avalanche counters at the CERN n_TOF facility

    No full text
    International audienceThe neutron-induced fission cross sections of Th232 and U233 were measured relative to U235 in a wide neutron energy range up to 1 GeV (and from fission threshold in the case of Th232, and from 0.7 eV in case of U233), using the white-spectrum neutron source at the CERN Neutron Time-of-Flight (n_TOF) facility. Parallel plate avalanche counters (PPACs) were used, installed at the Experimental Area 1 (EAR1), which is located at 185 m from the neutron spallation target. The anisotropic emission of fission fragments were taken into account in the detection efficiency by using, in the case of U233, previous results available in EXFOR, whereas in the case of Th232 these data were obtained from our measurement, using PPACs and targets tilted 45∘ with respect to the neutron beam direction. Finally, the obtained results are compared with past measurements and major evaluated nuclear data libraries. Calculations using the high-energy reaction models INCL++ and ABLA07 were performed and some of their parameters were modified to reproduce the experimental results. At high energies, where no other neutron data exist, our results are compared with experimental data on proton-induced fission. Moreover, the dependence of the fission cross section at 1 GeV with the fissility parameter of the target nucleus is studied by combining those (p,f) data with our (n,f) data on Th232 and U233 and on other isotopes studied earlier at n_TOF using the same experimental setup

    Neutron-induced fission cross sections of Th 232 and U 233 up to 1 GeV using parallel plate avalanche counters at the CERN n_TOF facility

    Get PDF
    The neutron-induced fission cross sections of 232^{232}Th and 233^{233}U were measured relative to 235^{235}U in a wide neutron energy range up to 1 GeV (and from fission threshold in the case of 232^{232}Th, and from 0.7 eV in case of 233^{233}U), using the white-spectrum neutron source at the CERN Neutron Time-of-Flight (n_TOF) facility. Parallel plate avalanche counters (PPACs) were used, installed at the Experimental Area 1 (EAR1), which is located at 185 m from the neutron spallation target. The anisotropic emission of fission fragments were taken into account in the detection efficiency by using, in the case of 233^{233}U, previous results available in EXFOR, whereas in the case of 232^{232}Th these data were obtained from our measurement, using PPACs and targets tilted 45∘ with respect to the neutron beam direction. Finally, the obtained results are compared with past measurements and major evaluated nuclear data libraries. Calculations using the high-energy reaction models INCL++ and ABLA07 were performed and some of their parameters were modified to reproduce the experimental results. At high energies, where no other neutron data exist, our results are compared with experimental data on proton-induced fission. Moreover, the dependence of the fission cross section at 1 GeV with the fissility parameter of the target nucleus is studied by combining those (p,f) data with our (n,f) data on 232^{232}Th and 233^{233}U and on other isotopes studied earlier at n_TOF using the same experimental setup

    The presence of toxic metals in popular farmed fish species and estimation of health risks through their consumption

    Get PDF
    This study concerns an assessment of essential and toxic metals (Zn, Cu, As, Cr and Cd) in some popular farm fishes which are largely consumed by the populations of the Southern region in Bangladesh. Three different species of fish (T. nilotica, P. pangasius and L. rohita) were collected from four representative farms located in the Fatickchari, Hathazari, Patiya and Raozan Upazila of Chittagong district. Flame Atomic Absorption Spectrometer (FAAS) and Graphite Furnace Atomic Absorption Spectrometer (GFAAS) were used to measure the metal concentrations. The order of concentration of metals in flesh was Zn > Cu > Cr > As > Cd with values of 16.205 +/- 0.303 > 0.874 +/- 0.037 > 0.590 +/- 0.05 >0.042 +/- 0.003 > 0.004 +/- 0.00 (mg/kg dw) in T. nilotica, 20.324 +/- 0.697 > 1.035 +/- 0.050> 0.577 +/- 0.074> 0.045 +/- 0.005 > 0.006 +/- 0.000 (mg/kg dw) in P. pangasius and 22.270 +/- 0.745 > 0.953 +/- 0.525 > 0.623 +/- 0.060 > 0.035 +/- 0.002 > 0.004 +/- 0.000 (mg/kg dw) in L. rohita. Measured data lie within the permissible limits recommended by WHO/FAO. Potential metal toxicity to human health following the consumption of the studied fishes was estimated via a number of hazard parameters: Daily intake of metal (DIM), Target hazard quotient (THQ), Hazard index (HI) and Target risk (TR), all of the data show values within the recommended level given by regulatory bodies. Estimated TR for potential carcinogenic metals As, Cr and Cd were found in the range (10_6 - 10_5), which lies within the US-EPA risk range of 10_6 - 10_4. Note that, fish consumption forms a minor part of the total diet while the US-EPA risk range is for the dietary intake from all foods. Therefore the estimated risk may not be totally neglected. Moreover, considering the non-biodegradability of toxic metals and their potential uptake in fish tissues, reduction in metal supplementation in fish feed should be introduced and periodic monitoring of fish may help to mitigate non-essential metal toxicity to consumers

    Monte Carlo Simulation and Experimental Determination of Tissue Phantom Ratio for Megavoltage Photon Beam

    No full text

    Measurement of the neutron-induced fission cross-section of Am at the time-of-flight facility n TOF

    Get PDF
    Abstract. The neutron-induced fission cross-section of 241 Am has been measured relative to the standard fission cross-section of 235 U between 0.5 and 20 MeV. The experiment was performed at the CERN n TOF facility. Fission fragments were detected by a fast ionization chamber by discriminating against the α-particles from the high radioactivity of the samples. The high instantaneous neutron flux and the low background of the n TOF facility enabled us to obtain uncertainties of ≈ 5%. With the present results it was possible to resolve discrepancies between previous data sets and to confirm current evaluations, thus providing important information for design studies of future reactors with improved fuel burn-up

    High accuracy 234U(n,f) cross section in the resonance energy region

    No full text
    New results are presented of the 234U neutron-induced fission cross section, obtained with high accuracy in the resonance region by means of two methods using the 235U(n,f) as reference. The recent evaluation of the 235U(n,f) obtained with SAMMY by L. C. Leal et al. (these Proceedings), based on previous n_TOF data [1], has been used to calculate the 234U(n,f) cross section through the 234U/235U ratio, being here compared with the results obtained by using the n_TOF neutron flux

    Fission Fragment Angular Distribution measurements of 235U and 238U at CERN n_TOF facility

    Get PDF
    Neutron-induced fission cross sections of 238^{238}U and 235^{235}U are used as standards in the fast neutron region up to 200 MeV. A high accuracy of the standards is relevant to experimentally determine other neutron reaction cross sections. Therefore, the detection efficiency should be corrected by using the angular distribution of the fission fragments (FFAD), which are barely known above 20 MeV. In addition, the angular distribution of the fragments produced in the fission of highly excited and deformed nuclei is an important observable to investigate the nuclear fission process. In order to measure the FFAD of neutron-induced reactions, a fission detection setup based on parallel-plate avalanche counters (PPACs) has been developed and successfully used at the CERN-n_TOF facility. In this work, we present the preliminary results on the analysis of new 235^{235}U(n,f) and 238^{238}U(n,f) data in the extended energy range up to 200 MeV compared to the existing experimental data

    Neutron research at the N_TOF facility (CERN): results and perspectives

    No full text
    In the first ten years of operation, the neutron time-of-flight facility n_TOF at CERN has produced a large body of new and accurate data on neutron capture and fission cross sections, relevant to Nuclear Astrophysics and advanced nuclear technologies. In the next phase, with the construction of a second experimental area with a shorted flight path, the focus of the Collaboration will partially shift from high-resolution measurements of stable or long-lived isotopes, to high-flux measurements of isotopes of relatively short half-life, very low-cross sections, or available in very small quantities. The main results obtained so far at n_TOF and the future perspectives are here presented

    Fission fragment angular distribution measurements of 235U and 238U at CERN n_TOF facility

    No full text
    Neutron-induced fission cross sections of 238U and 235U are used as standards in the fast neutron region up to 200 MeV. A high accuracy of the standards is relevant to experimentally determine other neutron reaction cross sections. Therefore, the detection effciency should be corrected by using the angular distribution of the fission fragments (FFAD), which are barely known above 20 MeV. In addition, the angular distribution of the fragments produced in the fission of highly excited and deformed nuclei is an important observable to investigate the nuclear fission process. In order to measure the FFAD of neutron-induced reactions, a fission detection setup based on parallel-plate avalanche counters (PPACs) has been developed and successfully used at the CERN-n_TOF facility. In this work, we present the preliminary results on the analysis of new 235U(n,f) and 238U(n,f) data in the extended energy range up to 200 MeV compared to the existing experimental data

    Fission Fragment Angular Distribution measurements of 235U and 238U at CERN n-TOF facility

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited. EJP Web of Conferences 111, 10002 (2016). DOI: http://dx.doi.org/10.1051/epjconf/201611110002. © 2016 The Authors. Published by EDP Sciences.Neutron-induced fission cross sections of 238U and 235U are used as standards in the fast neutron region up to 200 MeV. A high accuracy of the standards is relevant to experimentally determine other neutron reaction cross sections. Therefore, the detection effciency should be corrected by using the angular distribution of the fission fragments (FFAD), which are barely known above 20 MeV. In addition, the angular distribution of the fragments produced in the fission of highly excited and deformed nuclei is an important observable to investigate the nuclear fission process. In order to measure the FFAD of neutron-induced reactions, a fission detection setup based on parallel-plate avalanche counters (PPACs) has been developed and successfully used at the CERN-n-TOF facility. In this work, we present the preliminary results on the analysis of new 235U(n,f) and 238U(n,f) data in the extended energy range up to 200 MeV compared to the existing experimental data
    • 

    corecore