1,225 research outputs found

    Topological dynamical quantum phase transition in a quantum skyrmion phase

    Full text link
    Quantum skyrmionic phase is modelled in a 2D helical spin lattice. This topological skyrmionic phase retains its nature in a large parameter space before moving to a ferromagnetic phase. Next nearest-neighbour interaction improves the stability and it also causes a shift of the topological phase in the parameter space. Nonanalytic behaviour of the rate function observed, when the system which is initially in a quantum skyrmion phase is quenched to a trivial quantum ferromagnetic phase, indicates a dynamical quantum phase transition. Dynamical quantum phase transition is absent when the system initially in a skyrmion phase is quenched to a helical phase

    Semiclassical theory for plasmons in two-dimensional inhomogeneous media

    Full text link
    The progress in two-dimensional materials has led to rapid experimental developments in quantum plasmonics, where light is manipulated using plasmons. Although numerical methods can be used to quantitatively describe plasmons in spatially inhomogeneous systems, they are limited to relatively small setups. Here, we present a novel semi-analytical method to describe plasmons in two-dimensional inhomogeneous media within the framework of the Random Phase Approximation (RPA). Our approach is based on the semiclassical approximation, which is formally applicable when the length scale of the inhomogeneity is much larger than the plasmon wavelength. We obtain an effective classical Hamiltonian for quantum plasmons by first separating the in-plane and out-of-plane degrees of freedom and subsequently employing the semiclassical Ansatz for the electrostatic plasmon potential. We illustrate this general theory by considering scattering of plasmons by radially symmetric inhomogeneities. We derive a semiclassical expression for the differential scattering cross section and compute its numerical values for a specific model of the inhomogeneity.Comment: 27 pages, 9 figure

    Observation of Kekulé vortices induced in graphene by hydrogen adatoms

    No full text
    Fractional charges are one of the wonders of the fractional quantum Hall effect, a liquid of strongly correlated electrons in a large magnetic field. Fractional excitations are also anticipated in two-dimensional crystals of non-interacting electrons under time-reversal symmetry, as bound states of a rotating bond order known as Kekul\'e vortex. However, the physical mechanisms inducing such topological defects remain elusive, preventing experimental realisations. Here, we report the observation of Kekul\'e vortices in the local density of states of graphene under time-reversal symmetry. The vortices result from intervalley scattering on chemisorbed hydrogen adatoms and have a purely electronic origin. Their 2{\pi} winding is reminiscent of the Berry phase {\pi} of the massless Dirac electrons. Remarkably, we observe that point scatterers with different symmetries such as divacancies can also induce a Kekul\'e bond order without vortex. Therefore, our local-probe study further confirms point defects as versatile building blocks for the control of graphene's electronic structure by kekul\'e order

    Exchange interactions in iron and nickel: DFT+DMFT study in paramagnetic phase

    Full text link
    We analyze possible ways to calculate magnetic exchange interactions within the density functional theory plus dynamical mean-field theory (DFT+DMFT) approach in the paramagnetic phase. Using the susceptibilities obtained within the ladder DMFT approach together with the random phase approximation result for the Heisenberg model, we obtain bilinear exchange interactions. We show that the earlier obtained result of Stepanov et al. [Phys. Rev. Lett. 121, 037204 (2018); Phys. Rev. B 105, 155151 (2022)] corresponds to considering individual magnetic moments in each orbital in the leading-order approximation in the non-local correlations. We consider a more general approach and apply it to evaluate the effective magnetic parameters of iron and nickel. We show that the analysis, based on the inverse orbital-summed susceptibilities, yields reasonable results for both, weak and strong magnets. For iron we find, in the low-temperature limit, the exchange interaction J0‚ČÉ0.20J_0\simeq 0.20 eV, while for nickel we obtain J0‚ČÉ1.2J_0\simeq 1.2 eV. The considered method also allows one to describe the spin-wave dispersion at temperatures T‚ąľTCT\sim T_C, which is in agreement with the experimental data.Comment: 10+3 pages, 6+5 figure

    Toxic Kidney Damage in Rats Following Subchronic Intraperitoneal Exposure to Element Oxide Nanoparticles

    No full text
    Chronic diseases of the urogenital tract, such as bladder cancer, prostate cancer, reproductive disorders, and nephropathies, can develop under the effects of chemical hazards in the working environment. In this respect, nanosized particles generated as by-products in many industrial processes seem to be particularly dangerous to organs such as the testes and the kidneys. Nephrotoxicity of element oxide particles has been studied in animal experiments with repeated intraperitoneal injections of Al2O3, TiO2, SiO2, PbO, CdO, CuO, and SeO nanoparticles (NPs) in total doses ranging from 4.5 to 45 mg/kg body weight of rats. NPs were synthesized by laser ablation. After cessation of exposure, we measured kidney weight and analyzed selected biochemical parameters in blood and urine, characterizing the state of the excretory system. We also examined histological sections of kidneys and estimated proportions of different cells in imprint smears of this organ. All element oxide NPs under investigation demonstrated a nephrotoxic effect following subchronic exposure. Following the exposure to SeO and SiO2 NPs, we observed a decrease in serum creatinine and urea, respectively. Exposure to Al2O3 NPs caused an increase in urinary creatinine and urea, while changes in total protein were controversial, as it increased under the effect of Al2O3 NPs and was reduced after exposure to CuO NPs. Histomorphological changes in kidneys are associated with desquamation of the epithelium (following the exposure to all NPs except those of Al2O3 and SiO2) and loss of the brush border (following the exposure to all NPs, except those of Al2O3, TiO2, and SiO2). The cytomorphological evaluation showed greater destruction of proximal sections of renal tubules. Compared to the controls, we observed statistically significant alterations in 42.1% (8 of 19) of parameters following the exposure to PbO, CuO, and SeO NPs in 21.1% (4 of 19)‚ÄĒfollowing that, to CdO and Al2O3 NPs‚ÄĒand in 15.8% (3 of 19) and 10.5% (2 of 19) of indicators, following the exposure to TiO2 and SiO2 nanoparticles, respectively. Histomorphological changes in kidneys are associated with desquamation of epithelium and loss of the brush border. The cytomorphological evaluation showed greater destruction of proximal sections of renal tubules. The severity of cyto- and histological structural changes in kidneys depends on the chemical nature of NPs. These alterations are not always consistent with biochemical ones, thus impeding early clinical diagnosis of renal damage. Unambiguous ranking of the NPs examined by the degree of their nephrotoxicity is difficult. Additional studies are necessary to establish key indicators of the nephrotoxic effect, which can facilitate early diagnosis of occupational and nonoccupational nephropathies

    Impulsive Fermi magnon-phonon resonance in antiferromagnetic CoF2CoF_{2}

    Full text link
    Understanding spin-lattice interactions in antiferromagnets is one of the most fundamental issues at the core of the recently emerging and booming fields of antiferromagnetic spintronics and magnonics. Recently, coherent nonlinear spin-lattice coupling was discovered in an antiferromagnet which opened the possibility to control the nonlinear coupling strength and thus showing a novel pathway to coherently control magnon-phonon dynamics. Here, utilizing intense narrow band terahertz (THz) pulses and tunable magnetic fields up to 7 T, we experimentally realize the conditions of the Fermi magnon-phonon resonance in antiferromagnetic CoF2CoF_{2}. These conditions imply that both the spin and the lattice anharmonicities harvest energy transfer between the subsystems, if the magnon eigenfrequency fmf_{m} is twice lower than the frequency of the phonon 2fm=fph2f_{m}=f_{ph}. Performing THz pump-infrared probe spectroscopy in conjunction with simulations, we explore the coupled magnon-phonon dynamics in the vicinity of the Fermi-resonance and reveal the corresponding fingerprints of an impulsive THz-induced response. This study focuses on the role of nonlinearity in spin-lattice interactions, providing insights into the control of coherent magnon-phonon energy exchange

    Non-local correlation effects due to virtual spin-flip processes in itinerant electron ferromagnets

    Full text link
    We present an ab initio method for eletcronic structure calculations, which accounts for the interaction of electrons and magnons in ferromagnets. While it is based on a many body perturbation theory we approximate numerically complex quantities with quantities from time dependent density functional theory. This results in a simple and affordable algorithm which allows us to consider more complex materials than those usually studied in this context (3d3d ferromagnets) while still being able to account for the non-locality of the self energy. Furthermore, our approach allows for a relatively simple way to incorporate self-consistency. Our results are in a good agreement with experimental and theoretical findings for iron and nickel. Especially the experimental exchange splitting of nickel is predicted accurately within our theory. Additionally, we study the halfmetallic ferromagnet NiMnSb concerning its non-qusiparticle states appearing in the bandgap due to spin-flip excitations

    Estimating Patterns of Classical and Quantum Skyrmion States

    Full text link
    In this review we discuss the latest results concerning development of the machine learning algorithms for characterization of the magnetic skyrmions that are topologically-protected magnetic textures originated from the Dzyaloshinskii-Moriya interaction that competes Heisenberg isotropic exchange in ferromagnets. We show that for classical spin systems there is a whole pool of machine approaches allowing their accurate phase classification and quantitative description on the basis of few magnetization snapshots. In turn, investigation of the quantum skyrmions is a less explored issue, since there are fundamental limitations on the simulation of such wave functions with classical supercomputers. One needs to find the ways to imitate quantum skyrmions on near-term quantum computers. In this respect, we discuss implementation of the method for estimating structural complexity of classical objects for characterization of the quantum skyrmion state on the basis of limited number of bitstrings obtained from the projective measurements

    Reconstruction of classical skyrmions from Anderson towers: quantum Darwinism in action

    Full text link
    The development of the quantum skyrmion concept is aimed at expanding the scope of the fundamental research and practical applications for classical topologically-protected magnetic textures, and potentially paves the way for creating new quantum technologies. Undoubtedly, this calls for establishing a connection between a classical skyrmion and its quantum counterpart: a skyrmion wave function is an intrinsically more complex object than a non-collinear configuration of classical spins representing the classical skyrmion. Up to date, such a quantum-classical relation was only established on the level of different physical observables, but not for classical and quantum states per se. In this work, we show that the classical skyrmion spin order can be reconstructed using only the low-energy part of the spectrum of the corresponding quantum spin Hamiltonian. This can be done by means of a flexible symmetry-free numerical realization of Anderson's idea of the towers of states (TOS) that allows one to study known, as well as unknown, classical spin configurations with a proper choice of the loss function. We show that the existence of the TOS in the spectrum of the quantum systems does not guarantee a priori that the classical skyrmion magnetization profile can be obtained as an outcome of the actual measurement. This procedure should be complemented by a proper decoherence mechanism due to the interaction with the environment. The later selects a specific combination of the TOS eigenfunctions before the measurement and, thus, ensures the transition from a highly-entangled quantum skyrmionic state to a classical non-collinear magnetic order that is measured in real experiments. The results obtained in the context of skyrmions allow us to take a fresh look at the problem of quantum antiferromagnetism.Comment: 15 pages, 10 figure

    Level-spectra Statistics in Planar Fractal Tight-Binding Models

    Full text link
    In this communication, we study the level-spectra statistics when a noninteracting electron gas is confined in \textit{Sierpi\'{n}ski Carpet} (\textit{SC}) lattices. These \textit{SC} lattices are constructed under two representative patterns of the selfself and genegene patterns, and classified into two subclass lattices by the area-perimeter scaling law. By the singularly continuous spectra and critical traits using two level-statistic tools\iffalse the nearest spacing distribution and alternative gap-ratio distribution\fi, we ascertain that both obey the critical phase due to broken translation symmetry and the long-range order of scaling symmetry. The Wigner-like conjecture is confirmed numerically since both belong to the Gaussian orthogonal ensemble. An analogy was observed in a quasiperiodic lattice~\cite{Zhong1998Level}. In addition, this critical phase isolates the crucial behavior near the metal-insulator transition edge in Anderson model. The lattice topology of the self-similarity feature can induce level clustering behavior.Comment: 11 pages, 6 figures, 2 Table
    • ‚Ķ
    corecore