20 research outputs found

    Nonlinear modeling of the vehicle/structure interaction on a skewed highway bridge using an iterative uncoupled approach

    No full text
    Vehicle/structure interaction is extremely important in determining the structural performance of highway bridges. However, an accurate prediction of the generated vibrations and forces requires a high-fidelity nonlinear 3D model which is sufficiently representative of the actual vehicle and bridge structure. In spite of all the computational advancements, there are still many technical difficulties to obtain a converging solution from a coupled highly nonlinear and highly damped vehicle/structure models. This paper presents an iterative uncoupled approach to obtain an accurate estimation of the vehicle/structure interaction. The multi-axle vehicle is simulated using a nonlinear 3D multibody dynamics model. The bridge model also contains several nonlinear components to accurately model the bridge behavior. The vehicle/bridge interaction results are obtained through an iterative solution by exchanging the outputs of two uncoupled nonlinear models. A convergence criterion is selected to obtain a reliable solution after several of these iterations. Finally, a reduced-order model of the bridge is developed using a state-space model. The linear reduced-order model of the bridge is coupled with the nonlinear vehicle model to improve the solution time of the analysis. The results are in a very good agreement with the iterative uncoupled approach. © 2012 SPIE.</p

    Characteristics of Competitors in Natural Survivals

    No full text
    Title: Characteristics ofcompetitors in natural survivals Aim: This graduation paper brings a comprehensive overview about the sport branch "natural survival", its organization, structure and race character. The main aim is to :find the characteristics of a group of competitors, their preparation, equipment, way of living and specializations. Method: Research material for our graduation paper has been collected through: Results: Quantitative data collection - a questionnaire. Document analysis, analysis of written materials and websites - qualitative content analysis. Preparation ofcompetitors for these races is not speci:fic. Race attractiveness decides the most about the competitors' participation in individua! races, and race duration decides the least. It is possible to include these races for testing skills, abilities and team cooperation for common sports people with the doser relation to outdoor sports. Comparison of number of competitors in the last years has confinned that the number ofcompetitors has settled down. A new sport branch "natural survival" has been formed. Keywords: Natural survival, sociological research, competitors' preparation and equipment, communication. Strana

    Additional file 3: Figure S2. of Bone-associated gene evolution and the origin of flight in birds

    No full text
    Genomic location of bone-associated genes. The circular ideogram represents the genomic location of bone-associated genes in four of the studied species. Each end-line represents the location of the bone-associated genes. Blue indicates human chromosomes (mammal representative). Dark orange the zebra finch (flying species), green the chicken and yellow the turkey (flightless species). (DOC 896 kb

    Direct Imaging of 3D Atomic-Scale Dopant-Defect Clustering Processes in Ion-Implanted Silicon

    No full text
    The fabrication of nanoscale semiconductor devices for use in future electronics, energy, and health is among others based on the precise placement of dopant atoms into the crystal lattice of semiconductors and their concurrent or subsequent electrical activation. Dopants are built into the lattice by fabrication processes like ion implantation, plasma-based doping, and thermal annealing. Throughout the fabrication processes fundamental phenomena like dopant diffusion, activation, and clustering occur concurrently with damaging and subsequently recovering the crystal lattice. These processes are described by atomic-scale mechanisms of ion–host atom interaction and have an immense impact on the electrical performance of the resulting devices. Insight in their fundamental nature is of utmost importance for optimizing the performance of nanoscale technologies. In this paper, we demonstrate direct three-dimensional imaging of boron clusters and atoms in crystal defects using field ion microscopy. Our approach allows for the first time the complete characterization of the size and crystallographic orientation of boron-decorated crystal defects. This new method opens a path to image a wide variety of dopant-cluster forms and hence to study the formation and dissolution of boron clusters in silicon on the atomic scale

    Additional file 14: Figure S4. of Bone-associated gene evolution and the origin of flight in birds

    No full text
    Body mass association with ω (dN/dS). Avian cladogram showing from CoEvol, the labels are the estimated ω (minimum maximum) for each branch on top and the estimated weight (minimum maximum). (DOC 423 kb

    Direct Imaging of 3D Atomic-Scale Dopant-Defect Clustering Processes in Ion-Implanted Silicon

    No full text
    The fabrication of nanoscale semiconductor devices for use in future electronics, energy, and health is among others based on the precise placement of dopant atoms into the crystal lattice of semiconductors and their concurrent or subsequent electrical activation. Dopants are built into the lattice by fabrication processes like ion implantation, plasma-based doping, and thermal annealing. Throughout the fabrication processes fundamental phenomena like dopant diffusion, activation, and clustering occur concurrently with damaging and subsequently recovering the crystal lattice. These processes are described by atomic-scale mechanisms of ion–host atom interaction and have an immense impact on the electrical performance of the resulting devices. Insight in their fundamental nature is of utmost importance for optimizing the performance of nanoscale technologies. In this paper, we demonstrate direct three-dimensional imaging of boron clusters and atoms in crystal defects using field ion microscopy. Our approach allows for the first time the complete characterization of the size and crystallographic orientation of boron-decorated crystal defects. This new method opens a path to image a wide variety of dopant-cluster forms and hence to study the formation and dissolution of boron clusters in silicon on the atomic scale

    Additional file 16: Table S12. of Bone-associated gene evolution and the origin of flight in birds

    No full text
    Covariance between dS, ω (dN/dS), gc content, and the three body mass measures (minimum, maximum and average) in 39 mammalian genomes using gene-based tree. The upper triangle shows the values obtained for all mammals and the lower triangle excluding bats. Each cell represent the covariance values and posterior probability are the bracketed values, posterior probability (** - < = 0.025 or > =0.975; * - < =0.05 or > =0.95) are highlighted in bold for the statistically significant correlations. (DOC 35 kb

    Additional file 1: Figure S1. of The wolf reference genome sequence (Canis lupus lupus) and its implications for Canis spp. population genomics

    No full text
    Phylogenies. The left panel shows the phylogenetic tree of all the samples, estimated from reads that are mapped to the boxer dog reference genome, while the right panel shows the phylogenetic tree estimated from the data after mapping reads to the denovo assembled wolf reference genome. Figure S2. Distribution of repeat elements. Total amount of bases in different repeat classes across the two reference genomes. Figure S3. Comparison of the divergence of the different repeat elements from their consensus sequence. The top panel shows the total number of bases against the divergence from the consensus sequence in each repeat family when using the de novo wolf reference genome for alignment. The bottom panel shows the same figures when using the boxer reference genome. Figure S4. Principal Components Analysis (PCA). Panels A and B show the first four principal components of the genotypes when using the de novo wolf reference assembly. For making these PCA plots, we used a missingness cutoff of 0.9 and a minor allele frequency cutoff of 0.2. Panels C and D show the first four principal components of the genotypes when using the boxer reference genome while using the same filtering thresholds. Figure S5. Picture of the skull of the Swedish wolf sample used for reference genome assembly. Table S1. Coverage and heterozygosity estimates. The coverage and heterozygosity are shown for each sample included in the study. For each animal, the higher estimate of coverage are bolded. (PDF 1652 kb
    corecore