99 research outputs found

    Influence of amyloid beta on impulse spiking of isolated hippocampal neurons

    Get PDF
    One of the signs of Alzheimer’s disease (AD) is the formation of β-amyloid plaques, which ultimately lead to the dysfunction of neurons with subsequent neurodegeneration. Although extensive researches have been conducted on the effects of different amyloid conformations such as oligomers and fibrils on neuronal function in isolated cells and circuits, the exact contribution of extracellular beta-amyloid on neurons remains incompletely comprehended. In our experiments, we studied the effect of β-amyloid peptide (Aβ1–42) on the action potential (APs) generation in isolated CA1 hippocampal neurons in perforated patch clamp conditions. Our findings demonstrate that Aβ1–42 affects the generation of APs differently in various hippocampal neurons, albeit with a shared effect of enhancing the firing response of the neurons within a minute of the start of Aβ1–42 application. In the first response type, there was a shift of 20–65% toward smaller values in the firing threshold of action potentials in response to inward current. Conversely, the firing threshold of action potentials was not affected in the second type of response to the application of Aβ1–42. In these neurons, Aβ1-42 caused a moderate increase in the frequency of spiking, up to 15%, with a relatively uniform increase in the frequency of action potentials generation regardless of the level of input current. Obtained data prove the absence of direct short-term negative effect of the Aβ1–42 on APs generation in neurons. Even with increasing the APs generation frequency and lowering the neurons’ activation threshold, neurons were functional. Obtained data can suggest that only the long-acting presence of the Aβ1–42 in the cell environment can cause neuronal dysfunction due to a prolonged increase of APs firing and predisposition to this process

    The F-actin cortical network is a major factor influencing the organization of the secretory machinery in chromaffin cells

    Get PDF
    We have studied how the F-actin cytoskeleton is involved in establishing the heterogeneous intracellular Ca2+ levels ([Ca2+]i) and in the organization of the exocytotic machinery in cultured bovine chromaffin cells. Simultaneous confocal visualization of [Ca2+]i and transmitted light studies of the cytoskeleton showed that, following cell stimulation, the maximal signal from the Ca2+-sensitive fluorescent dye Fluo-3 was in the empty cytosolic spaces left by cytoskeletal cages. This was mostly due to the accumulation of the dye in spaces devoid of cytoskeletal components, as shown by the use of alternative Ca2+-insensitive fluorescent cytosolic markers. In addition to affecting the distribution of such compounds in the cytosol, the cytoskeleton influenced the location of L- and P-Q-type Ca2+ channel clusters, which were associated with the borders of cytoskeletal cages in resting and stimulated cells. Indeed, syntaxin-1 and synaptotagmin-1, which are components of the secretory machinery, were present in the same location. Furthermore, granule exocytosis took place at these sites, indicating that the organization of the F-actin cytoskeletal cortex shapes the preferential sites for secretion by associating the secretory machinery with preferential sites for Ca2+ entry. The influence of this cortical organization on the propagation of [Ca2+]i can be modelled, illustrating how it serves to define rapid exocytosis

    Modulation of Ca2+ Signals by Epigallocatechin-3-gallate(EGCG) in Cultured Rat Hippocampal Neurons

    Get PDF
    Green tea has been receiving considerable attention as a possible neuroprotective agent against neurodegenerative disease. Epigallocatechin-3-gallate (EGCG) is the major compound of green tea. Calcium signaling has profound effects on almost all aspects of neuronal function. Using digital calcium imaging and patch-clamp technique, we determined the effects of EGCG on Ca2+ signals in hippocampal neurons. The results indicated that EGCG caused a dose-dependent increase in intracellular Ca2+ ([Ca2+]i). This [Ca2+]i increase was blocked by depleting intracellular Ca2+ stores with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin and cyclopiazonic acid. Furthermore, EGCG-stimulated increase in [Ca2+]i was abolished following treatment with a PLC inhibitor. However, EGCG inhibited high-voltage activated Ca2+ currents (IHVA) and NMDA-induced inward currents (INMDA). These data suggest that EGCG triggers a cascade of events: it activates phospholipase C (PLC), mobilizes intracellular Ca2+ stores, raises the cytosolic Ca2+ levels, and inhibits the VGCC and NMDA receptors-mediated Ca2+ influx through a process that remains to be determined

    The Differential Organization of F-Actin Alters the Distribution of Organelles in Cultured When Compared to Native Chromaffin Cells

    Get PDF
    Cultured bovine chromaffin cells have been used extensively as a neuroendocrine model to study regulated secretion. In order to extend such experimental findings to the physiological situation, it is necessary to study mayor cellular structures affecting secretion in cultured cells with their counterparts present in the adrenomedullary tissue. F-actin concentrates in a peripheral ring in cultured cells, as witnessed by phalloidin?rodhamine labeling, while extends throughout the cytoplasm in native cells. This result is also confirmed when studying the localization of ?-fodrin, a F-actin-associated protein. Furthermore, as a consequence of this redistribution of F-actin, we observed that chromaffin granules and mitochondria located into two different cortical and internal populations in cultured cells, whereas they are homogeneously distributed throughout the cytoplasm in the adrenomedullary tissue. Nevertheless, secretion from isolated cells and adrenal gland pieces is remarkably similar when measured by amperometry. Finally, we generate mathematical models to consider how the distribution of organelles affects the secretory kinetics of intact and cultured cells. Our results imply that we have to consider F-actin structural changes to interpret functional data obtained in cultured neuroendocrine cells.This study was supported by grants from the Spanish Ministerio de Economía y Competitividad (BFU2011-25095 and BFU2015- 63684-P, MINECO, FEDER, UE) to LMG

    Acid-evoked Ca2+ signalling in rat sensory neurones: effects of anoxia and aglycaemia

    Get PDF
    Ischaemia excites sensory neurones (generating pain) and promotes calcitonin gene-related peptide release from nerve endings. Acidosis is thought to play a key role in mediating excitation via the activation of proton-sensitive cation channels. In this study, we investigated the effects of acidosis upon Ca2+ signalling in sensory neurones from rat dorsal root ganglia. Both hypercapnic (pHo 6.8) and metabolic–hypercapnic (pHo 6.2) acidosis caused a biphasic increase in cytosolic calcium concentration ([Ca2+]i). This comprised a brief Ca2+ transient (half-time approximately 30 s) caused by Ca2+ influx followed by a sustained rise in [Ca2+]i due to Ca2+ release from caffeine and cyclopiazonic acid-sensitive internal stores. Acid-evoked Ca2+ influx was unaffected by voltage-gated Ca2+-channel inhibition with nickel and acid sensing ion channel (ASIC) inhibition with amiloride but was blocked by inhibition of transient receptor potential vanilloid receptors (TRPV1) with (E)-3-(4-t-butylphenyl)-N-(2,3-dihydrobenzo[b][1,4] dioxin-6-yl)acrylamide (AMG 9810; 1 μM) and N-(4-tertiarybutylphenyl)-4-(3-cholorphyridin-2-yl) tetrahydropryazine-1(2H)-carbox-amide (BCTC; 1 μM). Combining acidosis with anoxia and aglycaemia increased the amplitude of both phases of Ca2+ elevation and prolonged the Ca2+ transient. The Ca2+ transient evoked by combined acidosis, aglycaemia and anoxia was also substantially blocked by AMG 9810 and BCTC and, to a lesser extent, by amiloride. In summary, the principle mechanisms mediating increase in [Ca2+]i in response to acidosis are a brief Ca2+ influx through TRPV1 followed by sustained Ca2+ release from internal stores. These effects are potentiated by anoxia and aglycaemia, conditions also prevalent in ischaemia. The effects of anoxia and aglycaemia are suggested to be largely due to the inhibition of Ca2+-clearance mechanisms and possible increase in the role of ASICs

    Calcineurin involvement in the regulation of high-threshold Ca2+ channels in NG108-15 (rodent neuroblastoma × glioma hybrid) cells

    No full text
    We examined the relationship between calcineurin (protein phosphatase 2B (PP2B)) and voltage-operated Ca2+ channels (VOCCs) in NG108-15 cells. PP2B expression in NG108-15 cells was altered by transfection with plasmid constructs containing a full length cDNA of human PP2Bβ3 in sense (CN-15) and antisense (CN-21) orientation.Confocal immunocytochemical localization showed that in wild-type cells, PP2B immunoreactivity is uniformly distributed in undifferentiated cells and located at the inner surface of soma membrane and neurites in differentiated cells.To test the Ca2+ dependence of the VOCC, we used high-frequency stimulation (HFS). The L- and N-type VOCCs decreased by 37 and 52%, respectively, whereas the T-type current was only marginally sensitive to this procedure. FK-506 (2 μM), a specific blocker of PP2B, reduced the inhibition of L- and N-type VOCCs induced by HFS by 30 and 33%, respectively.In CN-15-transfected cells overexpressing PP2B, total high-voltage-activated (HVA) VOCCs were suppressed by about 60% at a test potential of +20 mV. Intracellular addition of EGTA or FK-506 into CN-15-transfected cells induced an up to 5-fold increase of HVA VOCCs.These findings indicate that PP2B activity does not influence the expression of HVA Ca2+ channels, but modulates their function by Ca2+-dependent dephosphorylation. Thus HVA VOCCs, in a phosphorylated state under control conditions, are downregulated by PP2B upon stimulation, with the major effect being on N-type VOCCs
    • …
    corecore