259 research outputs found

    Aquaporins and Neurodegenerative Diseases

    Get PDF
    Aquaporins (AQPs) are a family of widely distributed membrane-inserted water channel proteins providing a pathway for osmotically-driven water, glycerol, urea or ions transport through cell membranes and mechanisms to control particular aspects of homeostasis. Beside their physiological expression patterns in Central Nervous System (CNS), it is conceivable that AQPs are also abnormally expressed in some pathological conditions interesting CNS (e.g. neurodegenerative diseases) in which preservation of brain homeostasis is at risk

    Sirtuins, aging, and cardiovascular risks

    Get PDF
    4noThe sirtuins comprise a highly conserved family proteins present in virtually all species from bacteria to mammals. Sirtuins are members of the highly conserved class III histone deacetylases, and seven sirtuin genes (sirtuins 1-7) have been identified and characterized in mammals. Sirtuin activity is linked to metabolic control, apoptosis, cell survival, development, inflammation, and healthy aging. In this review, we summarize and discuss the potential mutual relations between each sirtuin and cardiovascular health and the impact of sirtuins on oxidative stress and so age-related cardiovascular disorders, underlining the possibility that sirtuins will be novel targets to contrast cardiovascular risks induced by aging.openopenFavero, Gaia; Franceschetti, Lorenzo; Rodella, Luigi Fabrizio; Rezzani, RitaFavero, Gaia; Franceschetti, Lorenzo; Rodella, Luigi Fabrizio; Rezzani, Rit

    A comparison of melatonin and α-lipoic acid in the induction of antioxidant defences in L6 rat skeletal muscle cells.

    Get PDF
    Aging is characterized by a progressive deterioration in physiological functions and metabolic processes. The loss of cells during aging in vital tissues and organs is related to several factors including oxidative stress and inflammation. Skeletal muscle degeneration is common in elderly people; in fact, this tissue is particularly vulnerable to oxidative stress since it requires large amounts of oxygen, and thus, oxidative damage is abundant and accumulates with increasing age. Melatonin (N-acetyl-5-methoxytryptamine) is a highly efficient scavenger of reactive oxygen species and it also exhibits beneficial anti-inflammatory and anti-aging effects. This study investigated the susceptibility of rat L6 skeletal muscle cells to an induced oxidative stress following their exposure to hydrogen peroxide (50 ÎĽM) and evaluating the potential protective effects of pre-treatment with melatonin (10 nM) compared to the known beneficial effect of alpha-lipoic acid (300 ÎĽM). Hydrogen peroxide-induced obvious oxidative stress; it increased the expression of tumour necrosis factor-alpha and in turn promoted nuclear factor kappa-B and overrode the endogenous defence mechanisms. Conversely, pre-treatment of the hydrogen peroxide-exposed cells to melatonin or alpha-lipoic acid increased endogenous antioxidant enzymes, including superoxide dismutase-2 and heme oxygenase-1; moreover, they ameliorated significantly oxidative stress damage and partially reduced alterations in the muscle cells, which are typical of aging. In conclusion, melatonin was equally effective as alpha-lipoic acid; it exhibited marked antioxidant and anti-aging effects at the level of skeletal muscle in vitro even when it was given in a much lower dose than alpha-lipoic acid

    Browning of Adipose Tissue and Sirtuin Involvement

    Get PDF
    Obesity is an important risk factor for many diseases, including cardiovascular diseases, metabolic syndrome and cancers. Excessive dietary intake of caloric food results in its accumulation in white adipose tissue (WAT), whereas energy expenditure by fat utilization and oxidation predominately occurs in brown adipose tissue (BAT). Reducing obesity has become an important prevention strategy of research interest, focusing in the recent years, mainly on browning of WAT, the process during which the enhance of the mitochondria biogenesis occurs and then white adipocytes are converted to metabolically active beige adipocytes. Sirtuin1 (SIRT1), the most known isoform of sirtuin deacetylases, is implied in the browning of WAT process. In fact, it is a sensitive sensor of cell energy metabolism and, together with other sirtuin isoforms, contributes to this differentiation process. This chapter provides an overview about SIRT1 involvement in browning of WAT as a target molecule that can thereby contrast obesity

    Promising Antineoplastic Actions of Melatonin

    Get PDF
    Melatonin is an endogenous indoleamine with an incredible variety of properties and activities. In recent years, an increasing number of studies have investigated this indoleamine’s interaction with cancerous cells. In particular, it seems that melatonin not only has the ability to improve the efficacy of many drugs used in chemotherapy but also has a direct inhibitory action on neoplastic cells. Many publications underlined the ability of melatonin to suppress the proliferation of various cancer cells or to modulate the expression of membrane receptors on these cells, thereby reducing tumor aggressiveness to metastasize. In addition, while melatonin has antiapoptotic actions in normal cells, in many cancer cells it has proapoptotic effects; these dichotomous actions have gained the interest of researchers. The increasing focus on melatonin in the field of oncology and the growing number of studies on this topic require a deep understanding of what we already know about the antineoplastic actions of melatonin. This information would be of value for potential use of melatonin against neoplastic diseases

    Hepatic Macrosteatosis Is Partially Converted to Microsteatosis by Melatonin Supplementation in ob/ob Mice Non-Alcoholic Fatty Liver Disease

    Get PDF
    Obesity is a common risk factor for non-alcoholic fatty liver disease (NAFLD). Currently, there are no specific treatments against NAFLD. Thus, examining any molecule with potential benefits against this condition emerged melatonin as a molecule that influences metabolic dysfunctions. The aim of this study was to determine whether melatonin would function against NAFDL, studying morphological, ultrastuctural and metabolic markers that characterize the liver of ob/ob mice

    Development of NASH in Obese Mice is Confounded by Adipose Tissue Increase in Inflammatory NOV and Oxidative Stress

    Get PDF
    Aim. Nonalcoholic steatohepatitis (NASH) is the consequence of insulin resistance, fatty acid accumulation, oxidative stress, and lipotoxicity.We hypothesize that an increase in the inflammatory adipokine NOV decreases antioxidant Heme Oxygenase 1 (HO- 1) levels in adipose and hepatic tissue, resulting in the development of NASH in obese mice. Methods. Mice were fed a high fat diet (HFD) and obese animals were administered an HO-1 inducer with or without an inhibitor of HO activity to examine levels of adipose-derived NOV and possible links between increased synthesis of inflammatory adipokines and hepatic pathology. Results. NASH mice displayed decreased HO-1 levels and HO activity, increased levels of hepatic heme, NOV, MMP2, hepcidin, and increased NAS scores and hepatic fibrosis. IncreasedHO-1 levels are associated with a decrease in NOV, improved hepatic NAS score, ameliorated fibrosis, and increases in mitochondrial integrity and insulin receptor phosphorylation. Adipose tissue function is disrupted in obesity as evidenced by an increase in proinflammatory molecules such as NOV and a decrease in adiponectin. Importantly, increased HO-1 levels are associated with a decrease of NOV, increased adiponectin levels, and increased levels of thermogenic and mitochondrial signaling associated genes in adipose tissue. Conclusions.These results suggest that the metabolic abnormalities in NASH are driven by decreased levels of hepatic HO-1 that is associated with an increase in the adipose-derived proinflammatory adipokine NOV in our obese mouse model of NASH. Concurrently, induction of HO-1 provides protection against insulin resistance as seen by increased insulin receptor phosphorylation. Pharmacological increases in HO-1 associated with decreases in NOV may offer a potential therapeutic approach in preventing fibrosis, mitochondrial dysfunction, and the development of NASH
    • …