136 research outputs found

    Enhancement strategies for transdermal drug delivery systems: current trends and applications

    Get PDF

    Piper betle L. Piperaceae

    Get PDF
    Artanthe hexagyna Miq.; Betela mastica Raf.; Chavica betle (L.) Miq.; Chavica blumei Miq.; Chavica chuvya Miq.; Chavica densa Miq.; Chavica siriboa (L.) Miq.; Cubeba melamiri Miq.; Cubeba seriboa Miq.; Macropiper potamogetonifolium (Opiz) Miq.; Piper anisodorum Blanco; Piper bathicarpum C.DC.; Piper bidentatum Stokes; Piper blancoi Merr.; Piper blumei (Miq.) Backer; Piper canaliculatum Opiz; Piper carnistilum C.DC.; Piper densum Blume; Piper fenixii C.DC.; Piper macgregorii C.DC.; Piper malamiri Blume; Piper malamiris L.; Piper malarayatense C.DC.; Piper marianum Opiz; Piper philippinense C.DC.; Piper pinguispicum C.DC. & Koord.; Piper potamogetonifolium Opiz; Piper puberulinodum C.DC.; Piper rubroglandulosum Chaveer. & Mokkamul; Piper saururus Burm.; Piper siriboa L.; Piperi betlum (L.) St.-Lag

    Pharmacosynthetic Deconstruction of Sleep-Wake Circuits in the Brain.

    No full text
    Over the past decade, basic sleep research investigating the circuitry controlling sleep and wakefulness has been boosted by pharmacosynthetic approaches, including chemogenetic techniques using designed receptors exclusively activated by designer drugs (DREADD). DREADD offers a series of tools that selectively control neuronal activity as a way to probe causal relationship between neuronal sub-populations and the regulation of the sleep-wake cycle. Following the path opened by optogenetics, DREADD tools applied to discrete neuronal sub-populations in numerous brain areas quickly made their contribution to the discovery and the expansion of our understanding of critical brain structures involved in a wide variety of behaviors and in the control of vigilance state architecture.info:eu-repo/semantics/publishe

    Rising rural body-mass index is the main driver of the global obesity epidemic in adults

    No full text
    Body-mass index (BMI) has increased steadily in most countries in parallel with a rise in the proportion of the population who live in cities(.)(1,2) This has led to a widely reported view that urbanization is one of the most important drivers of the global rise in obesity(3-6). Here we use 2,009 population-based studies, with measurements of height and weight in more than 112 million adults, to report national, regional and global trends in mean BMI segregated by place of residence (a rural or urban area) from 1985 to 2017. We show that, contrary to the dominant paradigm, more than 55% of the global rise in mean BMI from 1985 to 2017-and more than 80% in some low- and middle-income regions-was due to increases in BMI in rural areas. This large contribution stems from the fact that, with the exception of women in sub-Saharan Africa, BMI is increasing at the same rate or faster in rural areas than in cities in low- and middle-income regions. These trends have in turn resulted in a closing-and in some countries reversal-of the gap in BMI between urban and rural areas in low- and middle-income countries, especially for women. In high-income and industrialized countries, we noted a persistently higher rural BMI, especially for women. There is an urgent need for an integrated approach to rural nutrition that enhances financial and physical access to healthy foods, to avoid replacing the rural undernutrition disadvantage in poor countries with a more general malnutrition disadvantage that entails excessive consumption of low-quality calories

    Pan-cancer analysis of whole genomes