8,528 research outputs found

    Managing knowledge management tools: a systematic classification and comparison

    Get PDF
    Knowledge management (KM) is playing an important role in commercial and academic activities, and people are usually armed with effective KM tools for implementation. On one hand, KM tools can facilitate KM activities; however, on the other hand, with the “explosion” of KM tools development, people may feel confused about which to choose or which is more suitable. As a result, KM tools should be managed, so this paper aims at making a systematic classification and comparison research and proposes a KM tools selection strategy based on a point of view on knowledge lifecycle

    Does human imitate successful behaviors immediately?

    Get PDF
    The emergence and abundance of cooperation in animal and human societies is a challenging puzzle to evolutionary biology. Over the past decades, various mechanisms have been suggested which are capable of supporting cooperation. Imitation dynamics, however, are the most representative microscopic rules of human behaviors on studying these mechanisms. Their standard procedure is to choose the agent to imitate at random from the population. In the spatial version this means a random agent from the neighborhood. Hence, imitation rules do not include the possibility to explore the available strategies, and then they have the possibility to reach a homogeneous state rapidly when the population size is small. To prevent evolution stopping, theorists allow for random mutations in addition to the imitation dynamics. Consequently, if the microscopic rules involve both imitation and mutation, the frequency of agents switching to the more successful strategy must be higher than that of them transiting to the same target strategy via mutation dynamics. Here we show experimentally that the frequency of switching to successful strategy approximates to that of mutating to the same strategy. This suggests that imitation might play an insignificant role on the behaviors of human decision making. In addition, our experiments show that the probabilities of agents mutating to different target strategies are significantly distinct. The actual mutation theories cannot give us an appropriate explanation to the experimental results. Hence, we argue that the mutation dynamics might have evolved for other reasons

    Inside-out growth or inside-out quenching? clues from colour gradients of local galaxies

    Get PDF
    We constrain the spatial gradient of star formation history within galaxies using the colour gradients in NUV-u and u-i for a local spatially-resolved galaxy sample. By splitting each galaxy into an inner and an outer part, we find that most galaxies show negative gradients in these two colours. We first rule out dust extinction gradient and metallicity gradient as the dominant source for the colour gradient. Then using stellar population models, we explore variations in star formation history to explain the colour gradients. As shown by our earlier work, a two-phase SFH consisting of an early secular evolution (growth) phase and a subsequent rapid evolution (quenching) phase is necessary to explain the observed colour distributions among galaxies. We explore two different inside-out growth models and two different inside-out quenching models by varying parameters of the SFH between inner and outer regions of galaxies. Two of the models can explain the observed range of colour gradients in NUV-u and u-i colours. We further distinguish them using an additional constraint provided by the u-i colour gradient distribution, under the assumption of constant galaxy formation rate and a common SFH followed by most galaxies. We find the best model is an inside-out growth model in which the inner region has a shorter e-folding time scale in the growth phase than the outer region. More spatially resolved ultraviolet (UV) observations are needed to improve the significance of the result.Comment: 11 pages, 7 figures, accepted for publication in MNRA

    Characterizing AGB stars in Wide-field Infrared Survey Explorer (WISE) bands

    Full text link
    Since asymptotic giant branch (AGB) stars are bright and extended infrared objects, most Galactic AGB stars saturate the Wide-field Infrared Survey Explorer (WISE) detectors and therefore the WISE magnitudes that are restored by applying point-spread-function fitting need to be verified. Statistical properties of circumstellar envelopes around AGB stars are discussed on the basis of a WISE AGB catalog verified in this way. We cross-matched an AGB star sample with the WISE All-Sky Source Catalog and the Two Mircon All Sky Survey catalog. Infrared Space Observatory (ISO) spectra of a subsample of WISE AGB stars were also exploited. The dust radiation transfer code DUSTY was used to help predict the magnitudes in the W1 and W2 bands, the two WISE bands most affected by saturation, for calibration purpose, and to provide physical parameters of the AGB sample stars for analysis. DUSTY is verified against the ISO spectra to be a good tool to reproduce the spectral energy distributions of these AGB stars. Systematic magnitude-dependent offsets have been identified in WISE W1 and W2 magnitudes of the saturated AGB stars, and empirical calibration formulas are obtained for them on the basis of 1877 (W1) and 1558 (W2) AGB stars that are successfully fit with DUSTY. According to the calibration formulae, the corrections for W1 at 5 mag and W2 at 4 mag are −0.383-0.383 and 0.217 mag, respectively. In total, we calibrated the W1/W2 magnitudes of 2390/2021 AGB stars. The model parameters from the DUSTY and the calibrated WISE W1 and W2 magnitudes are used to discuss the behavior of the WISE color-color diagrams of AGB stars. The model parameters also reveal that O-rich AGB stars with opaque circumstellar envelopes are much rarer than opaque C-rich AGB stars toward the anti-Galactic center direction, which we attribute to the metallicity gradient of our Galaxy.Comment: 9 pages in two column format, 7 figures, accepted for publication in A&