23 research outputs found

    Inflammation and oxidative stress in multiple sclerosis:Consequences for therapy development

    Get PDF
    CNS inflammation is a major driver of MS pathology. Differential immune responses, including the adaptive and the innate immune system, are observed at various stages of MS and drive disease development and progression. Next to these immune-mediated mechanisms, other mediators contribute to MS pathology. These include immune-independent cell death of oligodendrocytes and neurons as well as oxidative stress-induced tissue damage. In particular, the complex influence of oxidative stress on inflammation and vice versa makes therapeutic interference complex. All approved MS therapeutics work by modulating the autoimmune response. However, despite substantial developments in the treatment of the relapsing-remitting form of MS, approved therapies for the progressive forms of MS as well as for MS-associated concomitants are limited and much needed. Here, we summarize the contribution of inflammation and oxidative stress to MS pathology and discuss consequences for MS therapy development

    Rappemonads are haptophyte phytoplankton

    Get PDF
    20年以上謎だった生物の正体が判明 --光合成生物進化解明のカギに--. 京都大学プレスリリース. 2021-03-29.Rapidly accumulating genetic data from environmental sequencing approaches have revealed an extraordinary level of unsuspected diversity within marine phytoplankton, which is responsible for around 50% of global net primary production.However, the phenotypic identity of many of the organisms distinguished by environmental DNA sequences remains unclear. The rappemonads represent a plastid-bearing protistan lineage that to date has only been identified by environmental plastid 16S rRNA sequences.The phenotypic identity of this group, which does not confidently cluster in any known algal clades in 16S rRNA phylogenetic reconstructions, has remained unknown since the first report of environmental sequences over two decades ago. We show that rappemonads are closely related to a haptophyte microalga, Pavlomulina ranunculiformis gen. nov. et sp. nov., and belong to a new haptophyte class, the Rappephyceae. Organellar phylogenomic analyses provide strong evidence for the inclusion of this lineage within the Haptophyta as a sister group to the Prymnesiophyceae. Members of this new class have a cosmopolitan distribution in coastal and oceanic regions. The relative read abundance of Rappephyceae in a large environmental barcoding dataset was comparable to, or greater than, those of major haptophyte species, such as the bloom-forming Gephyrocapsa huxleyi and Prymnesium parvum, and this result indicates that they likely have a significant impact as primary producers. Detailed characterization of Pavlomulina allowed for reconstruction of the ancient evolutionary history of the Haptophyta, a group that is one of the most important components of extant marine phytoplankton communities
    corecore