212 research outputs found

    Spectroscopic properties of a two-dimensional time-dependent Cepheid model I. Description and validation of the model

    Full text link
    Standard spectroscopic analyses of Cepheid variables are based on hydrostatic one-dimensional model atmospheres, with convection treated using various formulations of mixing-length theory. This paper aims to carry out an investigation of the validity of the quasi-static approximation in the context of pulsating stars. We check the adequacy of a two-dimensional time-dependent model of a Cepheid-like variable with focus on its spectroscopic properties. With the radiation-hydrodynamics code CO5BOLD, we construct a two-dimensional time-dependent envelope model of a Cepheid with Teff=5600T_\mathrm{eff}= 5600 K, log⁥g=2.0\log g=2.0, solar metallicity, and a 2.8-day pulsation period. Subsequently, we perform extensive spectral syntheses of a set of artificial iron lines in local thermodynamic equilibrium. The set of lines allows us to systematically study effects of line strength, ionization stage, and excitation potential. We evaluate the microturbulent velocity, line asymmetry, projection factor, and Doppler shifts. The mean Doppler shift is non-zero and negative, -1 km/s, after averaging over several full periods and lines. This residual line-of-sight velocity (related to the "K-term") is primarily caused by horizontal inhomogeneities, and consequently we interpret it as the familiar convective blueshift ubiquitously present in non-pulsating late-type stars. Limited statistics prevent firm conclusions on the line asymmetries. Our two-dimensional model provides a reasonably accurate representation of the spectroscopic properties of a short-period Cepheid-like variable star. Some properties are primarily controlled by convective inhomogeneities rather than by the Cepheid-defining pulsations

    Classical Cepheids, what else?

    Full text link
    We present new and independent estimates of the distances to the Magellanic Clouds (MCs) using near-infrared (NIR) and optical--NIR period--Wesenheit (PW) relations. The slopes of the PW relations are, within the dispersion, linear over the entire period range and independent of metal content. The absolute zero points were fixed using Galactic Cepheids with distances based on the infrared surface-brightness method. The true distance modulus we found for the Large Magellanic Cloud---(m−M)0=18.48±0.01±0.10(m-M)_0 = 18.48 \pm 0.01 \pm 0.10 mag---and the Small Magellanic Cloud---(m−M)0=18.94±0.01±0.10(m-M)_0 = 18.94 \pm 0.01 \pm 0.10 mag---agree quite well with similar distance determinations based on robust distance indicators. We also briefly discuss the evolutionary and pulsation properties of MC Cepheids

    Galactic abundance gradients from Cepheids : On the iron abundance gradient around 10-12 kpc

    Full text link
    Context: Classical Cepheids can be adopted to trace the chemical evolution of the Galactic disk since their distances can be estimated with very high accuracy. Aims: Homogeneous iron abundance measurements for 33 Galactic Cepheids located in the outer disk together with accurate distance determinations based on near-infrared photometry are adopted to constrain the Galactic iron gradient beyond 10 kpc. Methods: Iron abundances were determined using high resolution Cepheid spectra collected with three different observational instruments: ESPaDOnS@CFHT, Narval@TBL and [email protected] ESO/MPG telescope. Cepheid distances were estimated using near-infrared (J,H,K-band) period-luminosity relations and data from SAAO and the 2MASS catalog. Results: The least squares solution over the entire data set indicates that the iron gradient in the Galactic disk presents a slope of -0.052+/-0.003 dex/kpc in the 5-17 kpc range. However, the change of the iron abundance across the disk seems to be better described by a linear regime inside the solar circle and a flattening of the gradient toward the outer disk (beyond 10 kpc). In the latter region the iron gradient presents a shallower slope, i.e. -0.012+/-0.014 dex/kpc. In the outer disk (10-12 kpc) we also found that Cepheids present an increase in the spread in iron abundance. Current evidence indicates that the spread in metallicity depends on the Galactocentric longitude. Finally, current data do not support the hypothesis of a discontinuity in the iron gradient at Galactocentric distances of 10-12 kpc. Conclusions: The occurrence of a spread in iron abundance as a function of the Galactocentric longitude indicates that linear radial gradients should be cautiously treated to constrain the chemical evolution across the disk.Comment: 5 tables, 8 figures, Accepted in A&

    Removal of trimethylamine and isovaleric acid from gas streams in a continuous flow surface discharge plasma reactor

    No full text
    International audienceThe removal of isovaleric acid (IVA) and trimethylamine (TMA) using nonthermal plasma (NTP) in a continuous surface discharge reactor is investigated. The influence of the energy density shows that its increment is accompanied by the increase of the removal rate. At flowrate equal to 2 m3 h−1, when energy density extends three times, the removal rates of IVA and TMA are increased from 5 to 15 mmol m−2 h−1 and from 4 to 11 mmol m−2 h−1, respectively. The impact of relative humidity (RH) is also studied. An increase in % RH (up to 20%) leads to a decrease of the removal rate. Additionally, the formation of by-products in the surface discharge reactor and the plausible reaction mechanism of the two VOC were also detected and discussed. Moreover, a kinetic model taking into account the mass transfer step is developed in order to represent the experimental results. The model shows a good agreement with experimental results

    Formation des ions bromate dans une colonne Ă  bulles: Effets du peroxyde d'hydrogĂšne lors de l'ozonation

    Get PDF
    L'utilisation de l'ozone, aujourd'hui trĂšs rĂ©pandue dans les filiĂšres de potabilisation, n'est pas sans effet secondaire. De nombreux sous-produits peuvent se former comme notamment les ions bromates, sous produits finaux d'oxydation des bromures contenus dans les eaux. Malheureusement, le mĂ©canisme de production de cette espĂšce est complexe et dĂ©pend de nombreux paramĂštres difficiles Ă  apprĂ©hender.Sur une installation pilote de type colonne Ă  bulles fonctionnant Ă  contre-courant, nous avons Ă©tudiĂ© l'influence de diffĂ©rents paramĂštres, comme le pH, le temps de contact, la dose d'ozone et la dose de peroxyde d'hydrogĂšne, sur la formation des bromates et la dĂ©gradation des pesticides, reprĂ©sentĂ©e par l'atrazine.Les rĂ©sultats de la littĂ©rature ont Ă©tĂ© confirmĂ©s lors de l'emploi unique de l'ozone. La formation des ions bromate est influencĂ©e par la prĂ©sence du peroxyde d'hydrogĂšne. Cet oxydant intervient de maniĂšre non nĂ©gligeable sur la consommation des entitĂ©s intermĂ©diaires. Le couple HOBr/OBr- peut ĂȘtre oxydĂ© par l'ozone molĂ©culaire et le radical OH° mais peut Ă©galement ĂȘtre rĂ©duit par l'ozone et par le peroxyde sous sa forme acide ou sa base conjuguĂ©e. En ce qui concerne la dĂ©gradation des pesticides, l'utilisation de peroxyde d'hydrogĂšne couplĂ© Ă  l'ozone favorise l'oxydation de la molĂ©cule d'atrazine grĂące Ă  la prĂ©sence plus importante de radicaux hydroxyles.Une pollution accidentelle en pesticides pourra ĂȘtre traitĂ©e par l'ajout ponctuel de peroxyde d'hydrogĂšne avec une augmentation de pH, la formation des bromates sera, dans ce cas, faible. La dĂ©sinfection sera alors assurĂ©e par l'Ă©tape de chloration.In drinking water treatment plants, ozonation is often used to disinfect, to remove micropollutants and to improve water taste and odour. Ozonation increases organic matter biodegradability before filtration through granular active carbon and reduces the concentration of haloform precursors that react in the final chlorination step. However, by-products that could be detrimental to human health could be formed. For example, bromates, which are classified as carcinogenic compounds by the I.A.R.C, are produced during the ozonation of bromide-containing water. The mechanism of bromate formation is complex, due to the participation of molecular ozone and radical (hydroxyl and carbonate) reactions. The optimisation of the process should allow for a good disinfection and a reduction in the levels of micropollutants, together with low by-product formation.Using a pilot-scale counter-current bubble column, we have measured the bromate concentration in relation to pesticide removal. Water spiked with bromide and atrazine was stored in a completely stirred-tank (2 m3) before being pumped to the top of the column. The inlet gaseous ozone was measured by an analyser using UV detection, the outlet gaseous ozone was monitored by the potassium iodide method, and the dissolved ozone concentration was determined by the indigo trisulfonate method. Bromides and bromates were quantified by ion chromatography with a conductimetric detector, with a sodium carbonate solution as the eluant. Samples for bromate analysis were pretreated by OnGuard-Ag and OnGuard-H cartridges in series before injection. Atrazine degradation was measured by high performance liquid chromatography with a diode array detector, with a CH3CN/H2O mixture as the eluant. The linearisation of atrazine removal allowed us to calculate the hydroxyl radical concentration in a series of a completely-stirred tank reactors and in a plug-flow reactor.We have studied the influence of several parameters on bromate formation, including pH, bromide concentration and hydrogen peroxide concentration. As bromate production is a function of bromide concentration, we have chosen to calculate the ratio between the real bromate concentration and the theoretical bromate concentration if all bromide were oxidised to bromate. The pH affects bromate formation: an increase in pH in the absence of hydrogen peroxide increases bromate production, but when this oxidant is applied bromate production decreases when the pH increases. If reaction progress is represented as a function of [O3]*TC, we note that the presence of hydrogen peroxide increases bromate formation because of the increase in hydroxyl radical concentration, which favours radical formation. Nevertheless, if we represent reaction progress as a function of [OH∘]*TC, hydrogen peroxide seems to be an initiator and a scavenger in the mechanism of bromate formation. If we calculate the rates of all the oxidation and reduction reactions for HOBr/OBr- species, the contribution to the reduction of HOBr/OBr- species by peroxide is very important in comparison to the oxidation reactions, which inhibits bromate production. Without the hydrogen peroxide, the contribution of oxidation is equal to that of the reduction reaction, and in this case bromate formation is effective. When, under the same initial operational conditions, we apply hydrogen peroxide with an increase in pH, we observe a decrease in bromate formation with a decrease of the dissolved ozone concentration, which hinders the desired disinfection. The main contribution to atrazine oxidation is from the free-radical reactions, which explains why removal is better when we apply hydrogen peroxide than when we use ozone alone. However, if we want to respect a low bromate level in drinking water, atrazine degradation should not be greater than 90% for the operational conditions on our pilot-scale.If an accidental high pesticide concentration is observed, an addition of hydrogen peroxide with a concurrent increase of pH, could treat the pollution. In this case, a subsequent chlorination step would then have to be used to assure the disinfection alone

    On the metallicity gradient of the Galactic disk

    Get PDF
    Aims: The iron abundance gradient in the Galactic stellar disk provides fundamental constraints on the chemical evolution of this important Galaxy component. However the spread around the mean slope is, at fixed Galactocentric distance, larger than estimated uncertainties. Methods: To provide quantitative constraints on these trends we adopted iron abundances for 265 classical Cepheids (more than 50% of the currently known sample) based either on high-resolution spectra or on photometric metallicity indices. Homogeneous distances were estimated using near-infrared Period-Luminosity relations. The sample covers the four disk quadrants and their Galactocentric distances range from ~5 to ~17 kpc. Results: A linear regression over the entire sample provides an iron gradient of -0.051+/-0.004 dex/kpc. The above slope agrees quite well, within the errors, with previous estimates based either on Cepheids or on open clusters covering similar Galactocentric distances. However, once we split the sample in inner (Rg < 8 kpc) and outer disk Cepheids we found that the slope (-0.130+/-0.015 dex/kpc) in the former region is ~3 times steeper than the slope in the latter one (-0.042+/-0.004 dex/kpc). We found that in the outer disk the radial distribution of metal-poor (MP, [Fe/H]<-0.02 dex) and metal-rich (MR) Cepheids across the four disk quadrants does not show a clear trend when moving from the innermost to the external disk regions. We also found that the relative fractions of MP and MR Cepheids in the 1st and in the 3rd quadrant differ at 8 sigma (MP) and 15 sigma (MR) level.Comment: 6 pages, 6 figures, A&A accepte

    Deep secrets of intermediate-mass giants and supergiants: Models with rotation seem to overestimate mixing effects on the surface abundances of C, N, and Na

    Get PDF
    Recent observational results have demonstrated an increase in the surface Na abundance that correlates with stellar mass for red giants between 2 and 3 Msun. This trend supports evolutionary mixing processes as the explanation for Na overabundances seen in some red giants. In this same mass range, the surface Al abundance was shown to be constant. Our main aim was to extend the investigation of the Na and Al surface abundances to giants more massive than 3 Msun. We sought to establish accurately whether the Na abundances keep increasing with stellar mass or a plateau is reached. In addition, we investigated whether mixing can affect the surface abundance of Al in giants more massive than 3 Msun. We obtained new high-resolution spectra of 20 giants in the field of 10 open clusters; 17 of these stars were found to be members of 9 clusters. The giants have masses between 2.5 Msun and 5.6 Msun. Abundances of C, N, and O were determined using spectrum synthesis. The abundances of Na and Al were corrected for non-local thermodynamic equilibrium effects (non-LTE). Moreover, to extend the mass range of our sample, we collected from the literature high-quality C, N, O, and Na abundances of 32 Galactic Cepheids with accurate masses in the range between 3 Msun and 14 Msun. The surface abundances of C, N, O, Na, and Al were compared to predictions of stellar evolution models with and without the inclusion of rotation-induced mixing. The surface abundances of most giants and Cepheids of the sample can be explained by models without rotation. For giants above ~ 2.5 Msun, the Na abundances reach a plateau level of about [Na/Fe] ~ 0.20-0.25 dex (in non-LTE). Our results support previous works that found models with rotation to overestimate the mixing effects in intermediate-mass stars. [abridged]Comment: 17 pages, accepted for publication in A&

    On the metallicity distribution of classical Cepheids in the Galactic inner disk

    Get PDF
    We present homogeneous and accurate iron abundances for almost four dozen (47) of Galactic Cepheids using high-spectral resolution (R∌\sim40,000) high signal-to-noise ratio (S/N ≄\ge 100) optical spectra collected with UVES at VLT. A significant fraction of the sample (32) is located in the inner disk (RG lele 6.9 kpc) and for half of them we provide new iron abundances. Current findings indicate a steady increase in iron abundance when approaching the innermost regions of the thin disk. The metallicity is super-solar and ranges from 0.2 dex for RG ∌\sim 6.5 kpc to 0.4 dex for RG ∌\sim 5.5 kpc. Moreover, we do not find evidence of correlation between iron abundance and distance from the Galactic plane. We collected similar data available in the literature and ended up with a sample of 420 Cepheids. Current data suggest that the mean metallicity and the metallicity dispersion in the four quadrants of the Galactic disk attain similar values. The first-second quadrants show a more extended metal-poor tail, while the third-fourth quadrants show a more extended metal-rich tail, but the bulk of the sample is at solar iron abundance. Finally, we found a significant difference between the iron abundance of Cepheids located close to the edge of the inner disk ([Fe/H]∌\sim0.4) and young stars located either along the Galactic bar or in the nuclear bulge ([Fe/H]∌\sim0). Thus suggesting that the above regions have had different chemical enrichment histories. The same outcome applies to the metallicity gradient of the Galactic bulge, since mounting empirical evidence indicates that the mean metallicity increases when moving from the outer to the inner bulge regions.Comment: 10 pages, 5 figures; Corrected typos, corrected Table
    • 

    corecore