29 research outputs found

    Electrochemical DNA Biosensor Based on a Tetrahedral Nanostructure Probe for the Detection of Avian Influenza A (H7N9) Virus

    No full text
    A DNA tetrahedral nanostructure-based electrochemical biosensor was developed to detect avian influenza A (H7N9) virus through recognizing a fragment of the hemagglutinin gene sequence. The DNA tetrahedral probe was immobilized onto a gold electrode surface based on self-assembly between three thiolated nucleotide sequences and a longer nucleotide sequence containing complementary DNA to hybridize with the target single-stranded (ss)­DNA. The captured target sequence was hybridized with a biotinylated-ssDNA oligonucleotide as a detection probe, and then avidin-horseradish peroxidase was introduced to produce an amperometric signal through the interaction with 3,3′,5,5′-tetramethylbenzidine substrate. The target ssDNA was obtained by asymmetric polymerase chain reaction (PCR) of the cDNA template, reversely transcribed from the viral lysate of influenza A (H7N9) virus in throat swabs. The results showed that this electrochemical biosensor could specifically recognize the target DNA fragment of influenza A (H7N9) virus from other types of influenza viruses, such as influenza A (H1N1) and (H3N2) viruses, and even from single-base mismatches of oligonucleotides. Its detection limit could reach a magnitude of 100 fM for target nucleotide sequences. Moreover, the cycle number of the asymmetric PCR could be reduced below three with the electrochemical biosensor still distinguishing the target sequence from the negative control. To the best of our knowledge, this is the first report of the detection of target DNA from clinical samples using a tetrahedral DNA probe functionalized electrochemical biosensor. It displays that the DNA tetrahedra has a great potential application as a probe of the electrochemical biosensor to detect avian influenza A (H7N9) virus and other pathogens at the gene level, which will potentially aid the prevention and control of the disease caused by such pathogens

    Stable Nanocomposite Based on PEGylated and Silver Nanoparticles Loaded Graphene Oxide for Long-Term Antibacterial Activity

    No full text
    The increasing occurrence of antibiotic-resistant pathogens, especially superbugs, is compromising the efficacy of traditional antibiotics. Silver nanoparticles (AgNPs) loaded graphene oxide (GO) nanocomposite (GO-Ag) has drawn great interest as a promising alternative antibacterial material. However, GO-Ag nanocomposite often irreversibly aggregates in physiological solutions, severely influencing its antibacterial capacity and practical application. Herein, a PEGylated and AgNPs loaded GO nanocomposite (GO-PEG-Ag) is synthesized through a facile approach utilizing microwave irradiation, while avoiding extra reducing agents. Through PEGylation, the synthesized GO-PEG-Ag nanocomposite dispersed stably over one month in a series of media and resisted centrifugation at 10 000×<i>g</i> for 5 min, which would benefit effective contact between the nanocomposite and the bacteria. In contrast, GO-Ag aggregated within 1 h of dispersion in physiological solutions. In comparison with GO-Ag, GO-PEG-Ag showed stronger bactericidal capability toward not only normal Gram-negative/positive bacteria such as <i>E. coli</i> and <i>S. aureus</i> (∼100% of <i>E. coli</i> and ∼95.3% of <i>S. aureus</i> reduction by 10 μg/mL nanocomposite for 2.5 h), but also superbugs. Moreover, GO-PEG-Ag showed lower cytotoxicity toward HeLa cells. Importantly, GO-PEG-Ag presented long-term antibacterial effectiveness, remaining ∼95% antibacterial activity after one-week storage in saline solution versus <35% for GO-Ag. The antibacterial mechanisms of GO-PEG-Ag were evidenced as damage to the bacterial structure and production of reactive oxygen species, causing cytoplasm leakage and metabolism decrease. The stable GO-PEG-Ag nanocomposite with powerful and long-term antibacterial capability provides a more practical and effective strategy for fighting superbugs-including pathogen threats in biomedicine and public health

    Mutations detected in the <i>gyrA</i> and <i>parC</i> gene of H<sub>2</sub>S-negative <i>S</i>. Choleraesuis isolates.

    No full text
    <p>Ser, serine. Gly, glycine. Ala, alanine. Tyr, tyrosine. Cys, cysteine. Arg, arginine. Pro, proline.</p><p>Mutations detected in the <i>gyrA</i> and <i>parC</i> gene of H<sub>2</sub>S-negative <i>S</i>. Choleraesuis isolates.</p

    Antimicrobial Resistance and Molecular Investigation of H<sub>2</sub>S-Negative <i>Salmonella enterica</i> subsp. <i>enterica</i> serovar Choleraesuis Isolates in China

    No full text
    <div><p><i>Salmonella enterica</i> subsp. <i>enterica</i> serovar Choleraesuis is a highly invasive pathogen of swine that frequently causes serious outbreaks, in particular in Asia, and can also cause severe invasive disease in humans. In this study, 21 <i>S</i>. Choleraesuis isolates, detected from 21 patients with diarrhea in China between 2010 and 2011, were found to include 19 H<sub>2</sub>S-negative <i>S</i>. Choleraesuis isolates and two H<sub>2</sub>S-positive isolates. This is the first report of H<sub>2</sub>S-negative <i>S</i>. Choleraesuis isolated from humans. The majority of H<sub>2</sub>S-negative isolates exhibited high resistance to ampicillin, chloramphenicol, gentamicin, tetracycline, ticarcillin, and trimethoprim-sulfamethoxazole, but only six isolates were resistant to norfloxacin. In contrast, all of the isolates were sensitive to cephalosporins. Fifteen isolates were found to be multidrug resistant. In norfloxacin-resistant isolates, we detected mutations in the <i>gyrA</i> and <i>parC</i> genes and identified two new mutations in the <i>parC</i> gene. Pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), and clustered regularly interspaced short palindromic repeat (CRISPR) analysis were employed to investigate the genetic relatedness of H<sub>2</sub>S-negative and H<sub>2</sub>S-positive <i>S</i>. Choleraesuis isolates. PFGE revealed two groups, with all 19 H<sub>2</sub>S-negative <i>S</i>. Choleraesuis isolates belonging to Group I and H<sub>2</sub>S-positive isolates belonging to Group II. By MLST analysis, the H<sub>2</sub>S-negative isolates were all found to belong to ST68 and H<sub>2</sub>S-positive isolates belong to ST145. By CRISPR analysis, no significant differences in CRISPR 1 were detected; however, one H<sub>2</sub>S-negative isolate was found to contain three new spacers in CRISPR 2. All 19 H<sub>2</sub>S-negative isolates also possessed a frame-shift mutation at position 760 of <i>phsA</i> gene compared with H<sub>2</sub>S-positive isolates, which may be responsible for the H<sub>2</sub>S-negative phenotype. Moreover, the 19 H<sub>2</sub>S-negative isolates have similar PFGE patterns and same mutation site in the <i>phs</i>A gene, these results indicated that these H<sub>2</sub>S-negative isolates may have been prevalent in China. These findings suggested that surveillance should be increased of H<sub>2</sub>S-negative <i>S</i>. Choleraesuis in China.</p></div

    Data_Sheet_2_A Novel mcr-1 Variant Carried by an IncI2-Type Plasmid Identified From a Multidrug Resistant Enterotoxigenic Escherichia coli.ZIP

    No full text
    <p>In this study, we discovered a novel mobilized colistin resistance (mcr-1) gene variant, named mcr-1.9, which was identified in a colistin-resistant enterotoxigenic Escherichia coli (ETEC) strain from a clinical diarrhea case. The mcr-1.9 gene differs from mcr-1 at position 1036 due to a single nucleotide polymorphism (G→A), which results in an aspartic acid residue being replaced by an asparagine residue (Asp346→Asn) in the MCR-1 protein sequence. Antimicrobial susceptibility testing showed that the mcr-1.9-harboring ETEC strain is resistant to colistin at a minimum inhibitory concentration of 4 μg/ml. Plasmid profiling and conjugation experiments also suggest that the mcr-1.9 variant can be successfully transferred into the E. coli strain J53, indicating that the gene is located on a transferable plasmid. Bioinformatics analysis of data obtained from genome sequencing indicates that the mcr-1.9 gene is located on a 64,005 bp plasmid which has been named pEC26. This plasmid was found to have high similarity to the mcr-1-bearing IncI2-type plasmids pWF-5-19C (99% identity and 99% coverage) and pmcr1-IncI2 (99% identity and 98% coverage). The mcr-1.9-harboring ETEC also shows multidrug resistance to nine classes of antibiotics, and contains several virulence and antimicrobial-resistance genes suggested by the genome sequence analysis. Our report is the first to identify a new mcr-1 variant in an ETEC isolated from a human fecal sample, raising concerns about the existence of more such variants in human intestinal flora. Therefore, we believe that an undertaking to identify new mcr-1 variants in the bacterial communities of human intestines is of utmost importance, and that measures need to be taken to control the spread of mcr-1 and its variants in human intestinal microflora.</p

    Table_1_A Novel mcr-1 Variant Carried by an IncI2-Type Plasmid Identified From a Multidrug Resistant Enterotoxigenic Escherichia coli.XLSX

    No full text
    <p>In this study, we discovered a novel mobilized colistin resistance (mcr-1) gene variant, named mcr-1.9, which was identified in a colistin-resistant enterotoxigenic Escherichia coli (ETEC) strain from a clinical diarrhea case. The mcr-1.9 gene differs from mcr-1 at position 1036 due to a single nucleotide polymorphism (G→A), which results in an aspartic acid residue being replaced by an asparagine residue (Asp346→Asn) in the MCR-1 protein sequence. Antimicrobial susceptibility testing showed that the mcr-1.9-harboring ETEC strain is resistant to colistin at a minimum inhibitory concentration of 4 μg/ml. Plasmid profiling and conjugation experiments also suggest that the mcr-1.9 variant can be successfully transferred into the E. coli strain J53, indicating that the gene is located on a transferable plasmid. Bioinformatics analysis of data obtained from genome sequencing indicates that the mcr-1.9 gene is located on a 64,005 bp plasmid which has been named pEC26. This plasmid was found to have high similarity to the mcr-1-bearing IncI2-type plasmids pWF-5-19C (99% identity and 99% coverage) and pmcr1-IncI2 (99% identity and 98% coverage). The mcr-1.9-harboring ETEC also shows multidrug resistance to nine classes of antibiotics, and contains several virulence and antimicrobial-resistance genes suggested by the genome sequence analysis. Our report is the first to identify a new mcr-1 variant in an ETEC isolated from a human fecal sample, raising concerns about the existence of more such variants in human intestinal flora. Therefore, we believe that an undertaking to identify new mcr-1 variants in the bacterial communities of human intestines is of utmost importance, and that measures need to be taken to control the spread of mcr-1 and its variants in human intestinal microflora.</p

    Data_Sheet_1_A Novel mcr-1 Variant Carried by an IncI2-Type Plasmid Identified From a Multidrug Resistant Enterotoxigenic Escherichia coli.DOCX

    No full text
    <p>In this study, we discovered a novel mobilized colistin resistance (mcr-1) gene variant, named mcr-1.9, which was identified in a colistin-resistant enterotoxigenic Escherichia coli (ETEC) strain from a clinical diarrhea case. The mcr-1.9 gene differs from mcr-1 at position 1036 due to a single nucleotide polymorphism (G→A), which results in an aspartic acid residue being replaced by an asparagine residue (Asp346→Asn) in the MCR-1 protein sequence. Antimicrobial susceptibility testing showed that the mcr-1.9-harboring ETEC strain is resistant to colistin at a minimum inhibitory concentration of 4 μg/ml. Plasmid profiling and conjugation experiments also suggest that the mcr-1.9 variant can be successfully transferred into the E. coli strain J53, indicating that the gene is located on a transferable plasmid. Bioinformatics analysis of data obtained from genome sequencing indicates that the mcr-1.9 gene is located on a 64,005 bp plasmid which has been named pEC26. This plasmid was found to have high similarity to the mcr-1-bearing IncI2-type plasmids pWF-5-19C (99% identity and 99% coverage) and pmcr1-IncI2 (99% identity and 98% coverage). The mcr-1.9-harboring ETEC also shows multidrug resistance to nine classes of antibiotics, and contains several virulence and antimicrobial-resistance genes suggested by the genome sequence analysis. Our report is the first to identify a new mcr-1 variant in an ETEC isolated from a human fecal sample, raising concerns about the existence of more such variants in human intestinal flora. Therefore, we believe that an undertaking to identify new mcr-1 variants in the bacterial communities of human intestines is of utmost importance, and that measures need to be taken to control the spread of mcr-1 and its variants in human intestinal microflora.</p

    Image_1_A Novel mcr-1 Variant Carried by an IncI2-Type Plasmid Identified From a Multidrug Resistant Enterotoxigenic Escherichia coli.JPEG

    No full text
    <p>In this study, we discovered a novel mobilized colistin resistance (mcr-1) gene variant, named mcr-1.9, which was identified in a colistin-resistant enterotoxigenic Escherichia coli (ETEC) strain from a clinical diarrhea case. The mcr-1.9 gene differs from mcr-1 at position 1036 due to a single nucleotide polymorphism (G→A), which results in an aspartic acid residue being replaced by an asparagine residue (Asp346→Asn) in the MCR-1 protein sequence. Antimicrobial susceptibility testing showed that the mcr-1.9-harboring ETEC strain is resistant to colistin at a minimum inhibitory concentration of 4 μg/ml. Plasmid profiling and conjugation experiments also suggest that the mcr-1.9 variant can be successfully transferred into the E. coli strain J53, indicating that the gene is located on a transferable plasmid. Bioinformatics analysis of data obtained from genome sequencing indicates that the mcr-1.9 gene is located on a 64,005 bp plasmid which has been named pEC26. This plasmid was found to have high similarity to the mcr-1-bearing IncI2-type plasmids pWF-5-19C (99% identity and 99% coverage) and pmcr1-IncI2 (99% identity and 98% coverage). The mcr-1.9-harboring ETEC also shows multidrug resistance to nine classes of antibiotics, and contains several virulence and antimicrobial-resistance genes suggested by the genome sequence analysis. Our report is the first to identify a new mcr-1 variant in an ETEC isolated from a human fecal sample, raising concerns about the existence of more such variants in human intestinal flora. Therefore, we believe that an undertaking to identify new mcr-1 variants in the bacterial communities of human intestines is of utmost importance, and that measures need to be taken to control the spread of mcr-1 and its variants in human intestinal microflora.</p
    corecore