138 research outputs found

    Plasma Tau and Neurofilament Light in Frontotemporal Lobar Degeneration and Alzheimer Disease

    Get PDF
    Objective: To test the hypothesis that plasma total tau (t-tau) and neurofilament light chain (NfL) concentrations may have a differential role in the study of frontotemporal lobar degeneration syndromes (FTLD-S) and clinically diagnosed Alzheimer disease syndromes (AD-S), we determined their diagnostic and prognostic value in FTLD-S and AD-S and their sensitivity to pathologic diagnoses. Methods: We measured plasma t-tau and NfL with the Simoa platform in 265 participants: 167 FTLD-S, 43 AD-S, and 55 healthy controls (HC), including 82 pathology-proven cases (50 FTLD-tau, 18 FTLD-TDP, 2 FTLD-FUS, and 12 AD) and 98 participants with amyloid PET. We compared cross-sectional and longitudinal biomarker concentrations between groups, their correlation with clinical measures of disease severity, progression, and survival, and cortical thickness. Results: Plasma NfL, but not plasma t-tau, discriminated FTLD-S from HC and AD-S from HC. Both plasma NfL and t-tau were poor discriminators between FLTD-S and AD-S. In pathology-confirmed cases, plasma NfL was higher in FTLD than AD and in FTLD-TDP compared to FTLD-tau, after accounting for age and disease severity. Plasma NfL, but not plasma t-tau, predicted clinical decline and survival and correlated with regional cortical thickness in both FTLD-S and AD-S. The combination of plasma NfL with plasma t-tau did not outperform plasma NfL alone. Conclusion: Plasma NfL is superior to plasma t-tau for the diagnosis and prediction of clinical progression of FTLD-S and AD-S. Classification of Evidence: This study provides Class III evidence that plasma NfL has superior diagnostic and prognostic performance vs plasma t-tau in FTLD and AD

    Neuropathological consensus criteria for the evaluation of Lewy pathology in post-mortem brains: a multi-centre study

    No full text
    Currently, the neuropathological diagnosis of Lewy body disease (LBD) may be stated according to several staging systems, which include the Braak Lewy body stages (Braak), the consensus criteria by McKeith and colleagues (McKeith), the modified McKeith system by Leverenz and colleagues (Leverenz), and the Unified Staging System by Beach and colleagues (Beach). All of these systems use semi-quantitative scoring (4- or 5-tier scales) of Lewy pathology (LP; i.e., Lewy bodies and Lewy neurites) in defined cortical and subcortical areas. While these systems are widely used, some suffer from low inter-rater reliability and/or an inability to unequivocally classify all cases with LP. To address these limitations, we devised a new system, the LP consensus criteria (LPC), which is based on the McKeith system, but applies a dichotomous approach for the scoring of LP (i.e., “absent” vs. “present”) and includes amygdala-predominant and olfactory-only stages. α-Synuclein-stained slides from brainstem, limbic system, neocortex, and olfactory bulb from a total of 34 cases with LP provided by the Newcastle Brain Tissue Resource (NBTR) and the University of Pennsylvania brain bank (UPBB) were scanned and assessed by 16 raters, who provided diagnostic categories for each case according to Braak, McKeith, Leverenz, Beach, and LPC systems. In addition, using LP scores available from neuropathological reports of LP cases from UPBB (n = 202) and NBTR (n = 134), JT (UPBB) and JA (NBTR) assigned categories according to all staging systems to these cases. McKeith, Leverenz, and LPC systems reached good (Krippendorff’s α ≈ 0.6), while both Braak and Beach systems had lower (Krippendorff’s α ≈ 0.4) inter-rater reliability, respectively. Using the LPC system, all cases could be unequivocally classified by the majority of raters, which was also seen for 97.1% when the Beach system was used. However, a considerable proportion of cases could not be classified when using Leverenz (11.8%), McKeith (26.5%), or Braak (29.4%) systems. The category of neocortical LP according to the LPC system was associated with a 5.9 OR (p < 0.0001) of dementia in the 134 NBTR cases and a 3.14 OR (p = 0.0001) in the 202 UPBB cases. We established that the LPC system has good reproducibility and allows classification of all cases into distinct categories. We expect that it will be reliable and useful in routine diagnostic practice and, therefore, suggest that it should be the standard future approach for the basic post-mortem evaluation of LP

    Plasma phosphorylated tau 217 and phosphorylated tau 181 as biomarkers in Alzheimer's disease and frontotemporal lobar degeneration: a retrospective diagnostic performance study

    Get PDF
    Background: Plasma tau phosphorylated at threonine 217 (p-tau217) and plasma tau phosphorylated at threonine 181 (p-tau181) are associated with Alzheimer's disease tau pathology. We compared the diagnostic value of both biomarkers in cognitively unimpaired participants and patients with a clinical diagnosis of mild cognitive impairment, Alzheimer's disease syndromes, or frontotemporal lobar degeneration (FTLD) syndromes. / Methods: In this retrospective multicohort diagnostic performance study, we analysed plasma samples, obtained from patients aged 18–99 years old who had been diagnosed with Alzheimer's disease syndromes (Alzheimer's disease dementia, logopenic variant primary progressive aphasia, or posterior cortical atrophy), FTLD syndromes (corticobasal syndrome, progressive supranuclear palsy, behavioural variant frontotemporal dementia, non-fluent variant primary progressive aphasia, or semantic variant primary progressive aphasia), or mild cognitive impairment; the participants were from the University of California San Francisco (UCSF) Memory and Aging Center, San Francisco, CA, USA, and the Advancing Research and Treatment for Frontotemporal Lobar Degeneration Consortium (ARTFL; 17 sites in the USA and two in Canada). Participants from both cohorts were carefully characterised, including assessments of CSF p-tau181, amyloid-PET or tau-PET (or both), and clinical and cognitive evaluations. Plasma p-tau181 and p-tau217 were measured using electrochemiluminescence-based assays, which differed only in the biotinylated antibody epitope specificity. Receiver operating characteristic analyses were used to determine diagnostic accuracy of both plasma markers using clinical diagnosis, neuropathological findings, and amyloid-PET and tau-PET measures as gold standards. Difference between two area under the curve (AUC) analyses were tested with the Delong test. / Findings: Data were collected from 593 participants (443 from UCSF and 150 from ARTFL, mean age 64 years [SD 13], 294 [50%] women) between July 1 and Nov 30, 2020. Plasma p-tau217 and p-tau181 were correlated (r=0·90, p<0·0001). Both p-tau217 and p-tau181 concentrations were increased in people with Alzheimer's disease syndromes (n=75, mean age 65 years [SD 10]) relative to cognitively unimpaired controls (n=118, mean age 61 years [SD 18]; AUC=0·98 [95% CI 0·95–1·00] for p-tau217, AUC=0·97 [0·94–0·99] for p-tau181; pdiff=0·31) and in pathology-confirmed Alzheimer's disease (n=15, mean age 73 years [SD 12]) versus pathologically confirmed FTLD (n=68, mean age 67 years [SD 8]; AUC=0·96 [0·92–1·00] for p-tau217, AUC=0·91 [0·82–1·00] for p-tau181; pdiff=0·22). P-tau217 outperformed p-tau181 in differentiating patients with Alzheimer's disease syndromes (n=75) from those with FTLD syndromes (n=274, mean age 67 years [SD 9]; AUC=0·93 [0·91–0·96] for p-tau217, AUC=0·91 [0·88–0·94] for p-tau181; pdiff=0·01). P-tau217 was a stronger indicator of amyloid-PET positivity (n=146, AUC=0·91 [0·88–0·94]) than was p-tau181 (n=214, AUC=0·89 [0·86–0·93]; pdiff=0·049). Tau-PET binding in the temporal cortex was more strongly associated with p-tau217 than p-tau181 (r=0·80 vs r=0·72; pdiff<0·0001, n=230). / Interpretation: Both p-tau217 and p-tau181 had excellent diagnostic performance for differentiating patients with Alzheimer's disease syndromes from other neurodegenerative disorders. There was some evidence in favour of p-tau217 compared with p-tau181 for differential diagnosis of Alzheimer's disease syndromes versus FTLD syndromes, as an indication of amyloid-PET-positivity, and for stronger correlations with tau-PET signal. Pending replication in independent, diverse, and older cohorts, plasma p-tau217 and p-tau181 could be useful screening tools to identify individuals with underlying amyloid and Alzheimer's disease tau pathology. / Funding: US National Institutes of Health, State of California Department of Health Services, Rainwater Charitable Foundation, Michael J Fox foundation, Association for Frontotemporal Degeneration, Alzheimer's Association

    Specific cortical and subcortical grey matter regions are associated with insomnia severity

    Get PDF
    BACKGROUND: There is an increasing awareness that sleep disturbances are a risk factor for dementia. Prior case-control studies suggested that brain grey matter (GM) changes involving cortical (i.e, prefrontal areas) and subcortical structures (i.e, putamen, thalamus) could be associated with insomnia status. However, it remains unclear whether there is a gradient association between these regions and the severity of insomnia in older adults who could be at risk for dementia. Since depressive symptoms and sleep apnea can both feature insomnia-related factors, can impact brain health and are frequently present in older populations, it is important to include them when studying insomnia. Therefore, our goal was to investigate GM changes associated with insomnia severity in a cohort of healthy older adults, taking into account the potential effect of depression and sleep apnea as well. We hypothesized that insomnia severity is correlated with 1) cortical regions responsible for regulation of sleep and emotion, such as the orbitofrontal cortex and, 2) subcortical regions, such as the putamen. METHODS: 120 healthy subjects (age 74.8±5.7 years old, 55.7% female) were recruited from the Hillblom Healthy Aging Network at the Memory and Aging Center, UCSF. All participants were determined to be cognitively healthy following a neurological evaluation, neuropsychological assessment and informant interview. Participants had a 3T brain MRI and completed the Insomnia Severity Index (ISI), Geriatric Depression Scale (GDS) and Berlin Sleep Questionnaire (BA) to assess sleep apnea. Cortical thickness (CTh) and subcortical volumes were obtained by the CAT12 toolbox within SPM12. We studied the correlation of CTh and subcortical volumes with ISI using multiple regressions adjusted by age, sex, handedness and MRI scan type. Additional models adjusting by GDS and BA were also performed. RESULTS: ISI and GDS were predominantly mild (4.9±4.2 and 2.5±2.9, respectively) and BA was mostly low risk (80%). Higher ISI correlated with lower CTh of the right orbitofrontal, right superior and caudal middle frontal areas, right temporo-parietal junction and left anterior cingulate cortex (p<0.001, uncorrected FWE). When adjusting by GDS, right ventral orbitofrontal and temporo-parietal junction remained significant, and left insula became significant (p<0.001, uncorrected FWE). Conversely, BA showed no effect. The results were no longer significant following FWE multiple comparisons. Regarding subcortical areas, higher putamen volumes were associated with higher ISI (p<0.01). CONCLUSIONS: Our findings highlight a relationship between insomnia severity and brain health, even with relatively mild insomnia, and independent of depression and likelihood of sleep apnea. The results extend the previous literature showing the association of specific GM areas (i.e, orbitofrontal, insular and temporo-parietal junction) not just with the presence of insomnia, but across the spectrum of severity itself. Moreover, our results suggest subcortical structures (i.e., putamen) are involved as well. Longitudinal studies are needed to clarify how these insomnia-related brain changes in healthy subjects align with an increased risk of dementia

    Diagnostic value of plasma phosphorylated tau181 in Alzheimer's disease and frontotemporal lobar degeneration

    Get PDF
    With the potential development of new disease-modifying Alzheimer’s disease (AD) therapies, simple, widely available screening tests are needed to identify which individuals, who are experiencing symptoms of cognitive or behavioral decline, should be further evaluated for initiation of treatment. A blood-based test for AD would be a less invasive and less expensive screening tool than the currently approved cerebrospinal fluid or amyloid β positron emission tomography (PET) diagnostic tests. We examined whether plasma tau phosphorylated at residue 181 (pTau181) could differentiate between clinically diagnosed or autopsy-confirmed AD and frontotemporal lobar degeneration. Plasma pTau181 concentrations were increased by 3.5-fold in AD compared to controls and differentiated AD from both clinically diagnosed (receiver operating characteristic area under the curve of 0.894) and autopsy-confirmed frontotemporal lobar degeneration (area under the curve of 0.878). Plasma pTau181 identified individuals who were amyloid β-PET-positive regardless of clinical diagnosis and correlated with cortical tau protein deposition measured by 18F-flortaucipir PET. Plasma pTau181 may be useful to screen for tau pathology associated with AD

    Relevance of biomarkers across different neurodegenerative

    Get PDF
    Background: The panel of fluid- and imaging-based biomarkers available for neurodegenerative disease research is growing and has the potential to close important gaps in research and the clinic. With this growth and increasing use, appropriate implementation and interpretation are paramount. Various biomarkers feature nuanced differences in strengths, limitations, and biases that must be considered when investigating disease etiology and clinical utility. For example, neuropathological investigations of Alzheimer’s disease pathogenesis can fall in disagreement with conclusions reached by biomarker-based investigations. Considering the varied strengths, limitations, and biases of different research methodologies and approaches may help harmonize disciplines within the neurodegenerative disease field. Purpose of review: Along with separate review articles covering fluid and imaging biomarkers in this issue of Alzheimer’s Research and Therapy, we present the result of a discussion from the 2019 Biomarkers in Neurodegenerative Diseases course at the University College London. Here, we discuss themes of biomarker use in neurodegenerative disease research, commenting on appropriate use, interpretation, and considerations for implementation across different neurodegenerative diseases. We also draw attention to areas where biomarker use can be combined with other disciplines to understand issues of pathophysiology and etiology underlying dementia. Lastly, we highlight novel modalities that have been proposed in the landscape of neurodegenerative disease research and care