8,751 research outputs found

    Three-dimensional numerical simulations of free convection in a layered porous enclosure

    Get PDF
    Three-dimensional numerical simulations are carried out for the study of free convection in a layered porous enclosure heated from below and cooled from the top. The system is defined as a cubic porous enclosure comprising three layers, of which the external ones share constant physical properties and the internal layer is allowed to vary in both permeability and thermal conductivity. The model is based on Darcy's law and the Boussinesq approximation. A parametric study to evaluate the sensitivity of the Nusselt number to a decrease in the permeability of the internal layer shows that strong permeability contrasts are required to observe an appreciable drop in the Nusselt number. If additionally the thickness of the internal layer is increased, a further decrease in the Nusselt number is observed as long as the convective modes remain the same, if the convective modes change the Nusselt number may increase. Decreasing the thermal conductivity of the middle layer causes first an increment in the Nusselt number and then a drop. On the other hand, the Nusselt number decreases in an approximately linear trend when the thermal conductivity of the layer is increased

    Women active in the middle ages: (Of women knight, regents and political leaders)

    Get PDF
    [Δε διατίθεται περίληψη / no abstract available][Δε διατίθεται περίληψη / no abstract available

    Modulation of autocrine TNF-α-stimulated matrix metalloproteinase 9 (MMP-9) expression by mitogenactivated protein kinases in THP-1 monocytic cells

    Get PDF
    Matrix metalloproteinase 9 (MMP-9) is implicated in various physiological processes by its ability to degrade the extracellular matrix (ECM) and process multiple regulatory proteins. Normally, MMP-9 expression is tightly controlled in cells. Sustained or enhanced MMP-9 secretion, however, has been demonstrated to contribute to the pathophysiology of numerous diseases, including arthritis and tumor progression, rendering this enzyme a major target for clinical interventions. Here we show that constitutive MMP-9 secretion was abrogated in THP-1 monocytic leukemia cells by addition of neutralizing antibodies against tumor necrosis factor alpha (TNF-α) or TNF receptor type 1 (TNF-R1), as well as by inhibition of TNF-α converting enzyme (TACE). This indicates that MMP-9 production in these cells is maintained by autocrine stimulation, with TNF-α acting via TNF-R1. To investigate the intracellular signaling routes involved in MMP-9 gene transcription, cells were treated with different inhibitors of major mitogen-activated protein kinase (MAPK) pathways. Interruption of the extracellular signal-regulated kinase pathway 1/2 (ERK1/2) using PD98059 significantly downregulated constitutive MMP-9 release. In contrast, blockage of p38 kinase activity by addition of SB203580 or SB202190, as well as inhibition of c-Jun N-terminal kinase (JNK) using L-JNK-I1, clearly augmented MMP-9 expression and secretion by an upregulation of ERK1/2 phosphorylation. Moreover, exogenously added TNF-α augmented MMP-9 synthesis and secretion in THP-1 cells via enhancement of ERK1/2 activity. Taken together, our results indicate that ERK1/2 activity plays a pivotal role in TNF-α-induced MMP-9 production and demonstrate its negative modulation by p38 and JNK activity. These findings suggest ERK1/2 rather than p38 and JNK as a reasonable target to specifically block MMP-9 expression using MAPK inhibitors in therapeutic applications

    Scalable domain decomposition methods for time-harmonic wave propagation problems

    Get PDF
    The construction of efficient solvers for non self-adjoint problems, like Helmholtz equations is a challenging task. After the discretisation of the PDE by a finite element method, the resulting linear systems are large and because of their spectral properties, difficult to analyse theoretically and to solve by iterative methods. Domain decomposition methods are hybrid methods, as they use an iterative coupling of smaller problems which are solved in turn by direct methods. They rely on dividing the global problem into local subproblems on smaller subdomains. These methods can be used as iterative solvers but also as preconditioners in a Krylov method. Robustness with respect of the number of subdomains is important as this is related to the notion of scalability. We focus here on a configuration where scalability is achieved without the addition of a coarse-space correction. However, convergence can still be improved by modifying the transmission conditions imposed between the subdomains. In this manuscript, we start by giving an overview of the basic domain decomposition methods and their use as preconditioners. Then we consider these methods from an iterative point of view and we perform a study of convergence analysis of overlapping Schwarz methods with Dirichlet, Robin, zeroth and second order transmission conditions for many subdomains. We also present more sophisticated methods, which implement more effective transmission conditions depending on some optimised parameters. In our analysis, we focus on the Helmholtz problem and the magnetotelluric approximation of Maxwell’s equation for stripwise decompositions into many domains. Our theoretical findings are being demonstrated by the appropriate numerical evidence.The construction of efficient solvers for non self-adjoint problems, like Helmholtz equations is a challenging task. After the discretisation of the PDE by a finite element method, the resulting linear systems are large and because of their spectral properties, difficult to analyse theoretically and to solve by iterative methods. Domain decomposition methods are hybrid methods, as they use an iterative coupling of smaller problems which are solved in turn by direct methods. They rely on dividing the global problem into local subproblems on smaller subdomains. These methods can be used as iterative solvers but also as preconditioners in a Krylov method. Robustness with respect of the number of subdomains is important as this is related to the notion of scalability. We focus here on a configuration where scalability is achieved without the addition of a coarse-space correction. However, convergence can still be improved by modifying the transmission conditions imposed between the subdomains. In this manuscript, we start by giving an overview of the basic domain decomposition methods and their use as preconditioners. Then we consider these methods from an iterative point of view and we perform a study of convergence analysis of overlapping Schwarz methods with Dirichlet, Robin, zeroth and second order transmission conditions for many subdomains. We also present more sophisticated methods, which implement more effective transmission conditions depending on some optimised parameters. In our analysis, we focus on the Helmholtz problem and the magnetotelluric approximation of Maxwell’s equation for stripwise decompositions into many domains. Our theoretical findings are being demonstrated by the appropriate numerical evidence

    Microwave-assisted synthesis of a MK2 inhibitor by Suzuki-Miyaura coupling for study in Werner syndrome cells

    Get PDF
    Microwave-assisted Suzuki-Miyaura cross-coupling reactions have been employed towards the synthesis of three different MAPKAPK2 (MK2) inhibitors to study accelerated aging in Werner syndrome (WS) cells, including the cross-coupling of a 2-chloroquinoline with a 3-pyridinylboronic acid, the coupling of an aryl bromide with an indolylboronic acid and the reaction of a 3-amino-4-bromopyrazole with 4-carbamoylphenylboronic acid. In all of these processes, the Suzuki-Miyaura reaction was fast and relatively efficient using a palladium catalyst under microwave irradiation. The process was incorporated into a rapid 3-step microwave-assisted method for the synthesis of a MK2 inhibitor involving 3-aminopyrazole formation, pyrazole C-4 bromination using N-bromosuccinimide (NBS), and Suzuki-Miyaura cross-coupling of the pyrazolyl bromide with 4-carbamoylphenylboronic acid to give the target 4-arylpyrazole in 35% overall yield, suitable for study in WS cells
    corecore