777 research outputs found

    Printed soft skin electrodes for seamless bio-impedance measurements

    No full text

    Bio-potential noise of dry printed electrodes: physiology versus the skin-electrode impedance

    Get PDF
    Objective. To explore noise characteristics and the effect physiological activity has on the link between impedance and noise. Approach. Dry-printed electrodes are emerging as a new and exciting technology for skin electro-physiology. Such electrode arrays offer many advantages including user convenience, quick placement, and high resolution. Here we analyze extensive electro-physiological data recorded from the arm and the face to study and quantify the noise of dry electrodes, and to characterize the link between noise and impedance. In particular, we studied the effect of the physiological state of the subject (e.g. rapid eye movement sleep) on noise. Main results. We show that baseline noise values extracted from dry electrodes in the arm are in agreement with the Nyquist equation. In the face, on the other hand, the measured noise values were higher than the values predicted by the Nyquist equation. In addition, we studied how different electrode properties affect performances, including electrode size, shape, and material properties. Significance. Altogether, the results presented here provide a basis for understanding dry electrode performances and substantiate their great potential in electro-physiological investigations

    Improving the Management of Tardive Dyskinesia on an Inpatient Mental Health Unit

    Get PDF
    Implement a practice change on the adult mental health unit to improve the accuracy and increase the rate of completion of the abnormal involuntary movement scale (AIMS) for tardive dyskinesia (TD).https://digitalcommons.centracare.com/nursing_posters/1127/thumbnail.jp

    Effect of HIPEC according to HRD/BRCAwt genomic profile in stage III ovarian cancer:Results from the phase III OVHIPEC trial

    Get PDF
    The addition of hyperthermic intraperitoneal chemotherapy (HIPEC) with cisplatin to interval cytoreductive surgery improves recurrence-free (RFS) and overall survival (OS) in patients with stage III ovarian cancer. Homologous recombination deficient (HRD) ovarian tumors are usually more platinum sensitive. Since hyperthermia impairs BRCA1/2 protein function, we hypothesized that HRD tumors respond best to treatment with HIPEC. We analyzed the effect of HIPEC in patients in the OVHIPEC trial, stratified by HRD status and BRCAm status. Clinical data and tissue samples were collected from patients included in the randomized, phase III OVHIPEC-1 trial. DNA copy number variation (CNV) profiles, HRD-related pathogenic mutations and BRCA1 promotor hypermethylation were determined. CNV-profiles were categorized as HRD or non-HRD, based on a previously validated algorithm-based BRCA1-like classifier. Hazard ratios (HR) and corresponding 99% confidence intervals (CI) for the effect of RFS and OS of HIPEC in the BRCAm, the HRD/BRCAwt and the non-HRD group were estimated using Cox proportional hazard models. Tumor DNA was available from 200/245 (82%) patients. Seventeen (9%) tumors carried a pathogenic mutation in BRCA1 and 14 (7%) in BRCA2. Ninety-one (46%) tumors classified as BRCA1-like. The effect of HIPEC on RFS and OS was absent in BRCAm tumors (HR 1.25; 99%CI 0.48-3.29), and most present in HRD/BRCAwt (HR 0.44; 99%CI 0.21-0.91), and non-HRD/BRCAwt tumors (HR 0.82; 99%CI 0.48-1.42), interaction P value: 0.024. Patients with HRD tumors without pathogenic BRCA1/2 mutation appear to benefit most from treatment with HIPEC, while benefit in patients with BRCA1/2 pathogenic mutations and patients without HRD seems less evident

    Gas-assisted blade-coating of organic semiconductors: molecular assembly, device fabrication and complex thin-film structuring

    Get PDF
    The competitive performance of optoelectronic devices based on advanced organic semiconductors increasingly calls for suitably scalable processing schemes to capitalise on their application potential. With performance benchmarks typically established by spin-coating fabrication, doctor-blade deposition represents a widely available roll-to-roll-compatible means for the preparation of large-area samples and establishing the device upscaling potential. However, the inherently slower film formation kinetics often result in unfavourable active layer microstructures, requiring empirical and material-inefficient optimisation of solutions to reach the performance of spin-coated devices. Here we present a versatile approach to achieving performance parity for spin- and blade-coated devices using in situ gas-assisted drying enabled by a modular 3D-printed attachment. This is illustrated for organic photodetectors (OPDs) featuring bulk heterojunction active layers comprising blends of P3HT and PM6 polymer donors with the nonfullerene acceptor ITIC. Compared to conventionally blade-coated devices, mild drying gas pressures of 0.5–2 bar yield up to a 10-fold enhancement of specific detectivity by maximising external quantum efficiency and suppressing dark-current. Furthermore, controlling gas flux distribution enables one-step fabrication of 1D chain conformation and 2D chain orientation patterns in, respectively, PFO and P3HT:N2200 blend films, opening the possibility for high-throughput fabrication of devices with complex structured active layers

    Overview: On the transport and transformation of pollutants in the outflow of major population centres – observational data from the EMeRGe European intensive operational period in summer 2017

    Get PDF
    Megacities and other major population centres (MPCs) worldwide are major sources of air pollution, both locally as well as downwind. The overall assessment and prediction of the impact of MPC pollution on tropospheric chemistry are challenging. The present work provides an overview of the highlights of a major new contribution to the understanding of this issue based on the data and analysis of the EMeRGe (Effect of Megacities on the transport and transformation of pollutants on the Regional to Global scales) international project. EMeRGe focuses on atmospheric chemistry, dynamics, and transport of local and regional pollution originating in MPCs. Airborne measurements, taking advantage of the long range capabilities of the High Altitude and LOng Range Research Aircraft (HALO, https://www.halo-spp.de, last access: 22 March 2022), are a central part of the project. The synergistic use and consistent interpretation of observational data sets of different spatial and temporal resolution (e.g. from ground-based networks, airborne campaigns, and satellite measurements) supported by modelling within EMeRGe provide unique insight to test the current understanding of MPC pollution outflows. In order to obtain an adequate set of measurements at different spatial scales, two field experiments were positioned in time and space to contrast situations when the photochemical transformation of plumes emerging from MPCs is large. These experiments were conducted in summer 2017 over Europe and in the inter-monsoon period over Asia in spring 2018. The intensive observational periods (IOPs) involved HALO airborne measurements of ozone and its precursors, volatile organic compounds, aerosol particles, and related species as well as coordinated ground-based ancillary observations at different sites. Perfluorocarbon (PFC) tracer releases and model forecasts supported the flight planning, the identification of pollution plumes, and the analysis of chemical transformations during transport. This paper describes the experimental deployment and scientific questions of the IOP in Europe. The MPC targets – London (United Kingdom; UK), the Benelux/Ruhr area (Belgium, the Netherlands, Luxembourg and Germany), Paris (France), Rome and the Po Valley (Italy), and Madrid and Barcelona (Spain) – were investigated during seven HALO research flights with an aircraft base in Germany for a total of 53 flight hours. An in-flight comparison of HALO with the collaborating UK-airborne platform Facility for Airborne Atmospheric Measurements (FAAM) took place to assure accuracy and comparability of the instrumentation on board. Overall, EMeRGe unites measurements of near- and far-field emissions and hence deals with complex air masses of local and distant sources. Regional transport of several European MPC outflows was successfully identified and measured. Chemical processing of the MPC emissions was inferred from airborne observations of primary and secondary pollutants and the ratios between species having different chemical lifetimes. Photochemical processing of aerosol and secondary formation or organic acids was evident during the transport of MPC plumes. Urban plumes mix efficiently with natural sources as mineral dust and with biomass burning emissions from vegetation and forest fires. This confirms the importance of wildland fire emissions in Europe and indicates an important but discontinuous contribution to the European emission budget that might be of relevance in the design of efficient mitigation strategies. The present work provides an overview of the most salient results in the European context, with these being addressed in more detail within additional dedicated EMeRGe studies. The deployment and results obtained in Asia will be the subject of separate publications

    Women in Academia: Representation, Tenure, and Publication Patterns in the STEM and Social Sciences Fields

    Get PDF
    Women in the workplace experience inequity in their professional career options and in their upward mobility. One place this occurs frequently is in higher education. Whether it be their representation at various levels of professorship (wherein male full professors far outweigh the number of female full professors), the interactions with others on campus (especially regarding student expectations of professors), or the expectations that are placed upon them for success (over recruitment for teaching and service to the university; under recruitment for research opportunities and grants), women in academia are finding barriers that are preventing them from succeeding at a similar rate or frequency to that of their male counterparts. This review examines women’s experiences in academia, specifically those items related to promotion. The author describes the individual aspects of tenure (student evaluations, service to the university, and research) and the barriers that women have reported experiencing within each category, the previous data regarding the inequity between male and female professors, and how publication impacts promotion. Inequity exists in each of the three primary areas of the tenure process, but one area that has shown the greatest impact is within academic publication. The author reviewed the literature across Science, Technology, Engineering, and Math (STEM) and social sciences regarding 1) the role of sex in publication (from both the authors of submissions and the editors-in-chief of the journal), and 2) discrepancies in acceptance rates. The article ends with recommendations for future study surrounding tenure for women in higher education. Although outside the scope of the current research, future researchers should further expand reviews of this type to include people of colour in academia

    Overview: On the transport and transformation of pollutants in the outflow of major population centres – observational data from the EMeRGe European intensive operational period in summer 2017

    Get PDF
    Megacities and other major population centres (MPCs) worldwide are major sources of air pollution, both locally as well as downwind. The overall assessment and prediction of the impact of MPC pollution on tropospheric chemistry are challenging. The present work provides an overview of the highlights of a major new contribution to the understanding of this issue based on the data and analysis of the EMeRGe (Effect of Megacities on the transport and transformation of pollutants on the Regional to Global scales) international project. EMeRGe focuses on atmospheric chemistry, dynamics, and transport of local and regional pollution originating in MPCs. Airborne measurements, taking advantage of the long range capabilities of the High Altitude and LOng Range Research Aircraft (HALO, https://www.halo-spp.de, last access: 22 March 2022), are a central part of the project. The synergistic use and consistent interpretation of observational data sets of different spatial and temporal resolution (e.g. from ground-based networks, airborne campaigns, and satellite measurements) supported by modelling within EMeRGe provide unique insight to test the current understanding of MPC pollution outflows.In order to obtain an adequate set of measurements at different spatial scales, two field experiments were positioned in time and space to contrast situations when the photochemical transformation of plumes emerging from MPCs is large. These experiments were conducted in summer 2017 over Europe and in the inter-monsoon period over Asia in spring 2018. The intensive observational periods (IOPs) involved HALO airborne measurements of ozone and its precursors, volatile organic compounds, aerosol particles, and related species as well as coordinated ground-based ancillary observations at different sites. Perfluorocarbon (PFC) tracer releases and model forecasts supported the flight planning, the identification of pollution plumes, and the analysis of chemical transformations during transport.This paper describes the experimental deployment and scientific questions of the IOP in Europe. The MPC targets – London (United Kingdom; UK), the Benelux/Ruhr area (Belgium, the Netherlands, Luxembourg and Germany), Paris (France), Rome and the Po Valley (Italy), and Madrid and Barcelona (Spain) – were investigated during seven HALO research flights with an aircraft base in Germany for a total of 53 flight hours. An in-flight comparison of HALO with the collaborating UK-airborne platform Facility for Airborne Atmospheric Measurements (FAAM) took place to assure accuracy and comparability of the instrumentation on board.Overall, EMeRGe unites measurements of near- and far-field emissions and hence deals with complex air masses of local and distant sources. Regional transport of several European MPC outflows was successfully identified and measured. Chemical processing of the MPC emissions was inferred from airborne observations of primary and secondary pollutants and the ratios between species having different chemical lifetimes. Photochemical processing of aerosol and secondary formation or organic acids was evident during the transport of MPC plumes. Urban plumes mix efficiently with natural sources as mineral dust and with biomass burning emissions from vegetation and forest fires. This confirms the importance of wildland fire emissions in Europe and indicates an important but discontinuous contribution to the European emission budget that might be of relevance in the design of efficient mitigation strategies. The present work provides an overview of the most salient results in the European context, with these being addressed in more detail within additional dedicated EMeRGe studies. The deployment and results obtained in Asia will be the subject of separate publications
    • 

    corecore