15,412 research outputs found

    Molecular theory of solvation: Methodology summary and illustrations

    Full text link
    Integral equation theory of molecular liquids based on statistical mechanics is quite promising as an essential part of multiscale methodology for chemical and biomolecular nanosystems in solution. Beginning with a molecular interaction potential force field, it uses diagrammatic analysis of the solvation free energy to derive integral equations for correlation functions between molecules in solution in the statistical-mechanical ensemble. The infinite chain of coupled integral equations for many-body correlation functions is reduced to a tractable form for 2- or 3-body correlations by applying the so-called closure relations. Solving these equations produces the solvation structure with accuracy comparable to molecular simulations that have converged but has a critical advantage of readily treating the effects and processes spanning over a large space and slow time scales, by far not feasible for explicit solvent molecular simulations. One of the versions of this formalism, the three-dimensional reference interaction site model (3D-RISM) integral equation complemented with the Kovalenko-Hirata (KH) closure approximation, yields the solvation structure in terms of 3D maps of correlation functions, including density distributions, of solvent interaction sites around a solute (supra)molecule with full consistent account for the effects of chemical functionalities of all species in the solution. The solvation free energy and the subsequent thermodynamics are then obtained at once as a simple integral of the 3D correlation functions by performing thermodynamic integration analytically.Comment: 24 pages, 10 figures, Revie

    Determination of the quark-gluon string parameters from the data on pp, pA and AA collisions at wide energy range using Bayesian Gaussian Process Optimization

    Full text link
    Bayesian Gaussian Process Optimization can be considered as a method of the determination of the model parameters, based on the experimental data. In the range of soft QCD physics, the processes of hadron and nuclear interactions require using phenomenological models containing many parameters. In order to minimize the computation time, the model predictions can be parameterized using Gaussian Process regression, and then provide the input to the Bayesian Optimization. In this paper, the Bayesian Gaussian Process Optimization has been applied to the Monte Carlo model with string fusion. The parameters of the model are determined using experimental data on multiplicity and cross section of pp, pA and AA collisions at wide energy range. The results provide important constraints on the transverse radius of the quark-gluon string (rstrr_{str}) and the mean multiplicity per rapidity from one string (μ0\mu_0).Comment: 9 pages, 5 figures, proc. XIIIth Quark Confinement and the Hadron Spectru

    Strongly intensive fluctuations and correlations in ultrarelativistic nuclear collisions in the model with string fusion

    Get PDF
    The several types of strongly intensive correlation variables are studied in nuclear collisions at LHC energy. These quantities are expected not to depend on centrality class width. They have been calculated in the dipole-based parton-string Monte Carlo model with string fusion. The centrality dependence of the mean transverse momentum correlation coefficient and strongly intensive quantity Σ\Sigma between multiplicity and PTP_T have been obtained. Dynamical charge fluctuation νdyn\nu_{dyn} has been also calculated and compared with experimental data. It is shown that string fusion improves agreement with the experiment.Comment: 6 pages, 4 figures. Proceedings of Baldin ISHEPP XXI

    Lepton number, black hole entropy and 10 to the 32 copies of the Standard Model

    Full text link
    Lepton number violating processes are a typical problem in theories with a low quantum gravity scale. In this paper we examine lepton number violation (LNV) in theories with a saturated black hole bound on a large number of species. Such theories have been advocated recently as a possible solution to the hierarchy problem and an explanation of the smallness of neutrino masses. Naively one would expect black holes to introduce TeV scale LNV operators, thus generating unacceptably large rates of LNV processes. We show, however, that this does not happen in this scenario due to a complicated compensation mechanism between contributions of different Majorana neutrino states to these processes. As a result rates of LNV processes are extremely small and far beyond experimental reach, at least for the left-handed neutrino states.Comment: 6 pages, 3 figures, to appear in Proc. PASCOS 2010, Valencia, Spai

    Hidden Higgs Particle

    Full text link
    A modification of the standard model of electroweak interactions with the nonlocal Higgs sector is proposed. Proper form of nonlocality makes Higgs particles unobservable after the electroweak symmetry breaking. They appear only as a virtual state because their propagator is an entire function. We discuss some specific consequences of this approach comparing it with the conventional standard model.Comment: 15 pages, LaTeX, no figure

    Classifiers for centrality determination in proton-nucleus and nucleus-nucleus collisions

    Get PDF
    Centrality, as a geometrical property of the collision, is crucial for the physical interpretation of nucleus-nucleus and proton-nucleus experimental data. However, it cannot be directly accessed in event-by-event data analysis. Common methods for centrality estimation in A-A and p-A collisions usually rely on a single detector (either on the signal in zero-degree calorimeters or on the multiplicity in some semi-central rapidity range). In the present work, we made an attempt to develop an approach for centrality determination that is based on machine-learning techniques and utilizes information from several detector subsystems simultaneously. Different event classifiers are suggested and evaluated for their selectivity power in terms of the number of nucleons-participants and the impact parameter of the collision. Finer centrality resolution may allow to reduce impact from so-called volume fluctuations on physical observables being studied in heavy-ion experiments like ALICE at the LHC and fixed target experiment NA61/SHINE on SPS.Comment: To be published in proceedings of the "XIIth Quark Confinement and the Hadron Spectrum" conference (Thessaloniki, 2016
    corecore