807 research outputs found

    Particle hemodynamics analysis of Miller cuff arterial anastomosis

    Get PDF
    AbstractObjectiveStudies of animal and human below-knee anastomoses with Miller cuffs indicate that improved graft patency results from redistribution of intimal hyperplasia away from areas critical to flow delivery, such as the arterial toe. We hypothesize that particle hemodynamic conditions are a biophysical mechanism potentially responsible for the clinically observed shift in intimal hyperplasia localization associated with better patency of the Miller configuration.MethodsComputational fluid dynamics analysis of vortical flow patterns, wall shear stress fields, and potential for platelet interaction with the vascular surface was performed for realistic three-dimensional conventional and Miller cuff distal end-to-side anastomoses. Sites of significant platelet-wall interaction, including elevated near-wall particle concentrations and stasis, were identified with a validated near-wall residence time model, which includes shear stress–based factors for particle activation and surface reactivity.ResultsParticle hemodynamics largely coincide with the observed redistribution of intimal hyperplasia away from the critical arterial toe region. Detrimental changes in wall shear stress vector magnitude and direction are significantly reduced along the arterial suture line of the Miller cuff, largely as a result of increased anastomotic area available for flow redirection. However, because of strong particle-wall interaction, resulting high near-wall residence time contours indicate significant intimal hyperplasia along the graft-vein suture line and in the vicinity of the arterial heel.ConclusionsWhile a number of interacting mechanical, biophysical, and technical factors may be responsible for improved Miller cuff patency, our results imply that particle hemodynamics conditions engendered by Miller cuff geometry provide a mechanism that may account for redistribution of intimal hyperplasia. In particular, it appears that a focal region of significant particle-wall interaction at the arterial toe is substantially reduced with the Miller cuff configuration

    Subject-variability effects on micron particle deposition in human nasal cavities

    Get PDF
    Validated computer simulations of the airflow and particle dynamics in human nasal cavities are important for local, segmental and total deposition predictions of both inhaled toxic and therapeutic particles. Considering three, quite different subject-specific nasal airway configurations, micron-particle transport and deposition for low-to-medium flow rates have been analyzed. Of special interest was the olfactory region from which deposited drugs could readily migrate to the central nervous system for effective treatment. A secondary objective was the development of a new dimensionless group with which total particle deposition efficiency curves are very similar for all airway models, i.e., greatly reducing the impact of intersubject variability. Assuming dilute particle suspensions with inhalation flow rates ranging from 7.5 to 20 L/min, the airflow and particle-trajectory equations were solved in parallel with the in-house, multi-purpose Alya program at the Barcelona Supercomputing Center. The geometrically complex nasal airways generated intriguing airflow fields where the three subject models exhibit among them both similar as well as diverse flow structures and wall shear stress distributions, all related to the coupled particle transport and deposition. Nevertheless, with the new Stokes-Reynolds-number group, , the total deposition-efficiency curves for all three subjects and flow rates almost collapsed to a single function. However, local particle deposition efficiencies differed significantly for the three subjects when using particle diameters = 2, 10, and . Only one of the three subject-specific olfactory regions received, at relatively high values of the inertial parameter , some inhaled microspheres. Clearly, for drug delivery to the brain via the olfactory region, a new method of directional inhalation of nanoparticles would have to be implemented.The authors acknowledge Dr. Rick Corley and colleagues at Pacific Northwest National Laboratory for providing the subject B nasal surface geometry and Dr. Edgar Matida and Dr. Matthew Johnson at Carleton University for providing the subject C nasal surface geometryPeer ReviewedPostprint (published version

    Analysis of Multi-Layer Immiscible Fluid Flow in a Microchannel

    Get PDF
    The development of microfluidics platforms in recent years has led to an increase in the number of applications involving the flow of multiple immiscible layers of viscous electrolyte fluids. In this study, numerical results as well as analytic equations for velocity and shear stress profiles were derived for N layers with known viscosities, assuming steady laminar flow in a microchannel driven by pressure and/or electro-static (Coulomb) forces. Numerical simulation results, using a commercial software package, match analytical results for fully-developed flow. Entrance flow effects with centered fluid-layer shrinking were studied as well. Specifically, cases with larger viscosities in the inner layers show a very good agreement with experimental correlations for the dimensionless entrance length as a function of inlet Reynolds number. However, significant deviations may occur for multilayer flows with smaller viscosities in the inner layers. A correlation was deduced for the two-layer electroosmotic flow and the pressure driven flow, both being more complex when compared with single-layer flows. The impact of using powerlaw fluids on resulting velocity profiles has also been explored and compared to Newtonian fluid flows. The present model readily allows for an exploration of the impact of design choices on velocity profiles, shear stress, and channel distribution in multilayer microchannel flows as a function of layered viscosity distribution and type of driving force

    Nanoparticle shape effects on squeezed MHD flow of water based Cu, Al2O3 and SWCNTs over a porous sensor surface

    Get PDF
    Impact of nanoparticle shape on the squeezed MHD flow of water based metallic nanoparticles over a porous sensor surface in the presence of heat source has been investigated. In distinctly most paramount studies, three distinctive forms of nanoparticle shapes are employed into account, i.e. sphere ðm ¼ 3:0Þ, cylinder ðm ¼ 6:3698Þ and laminar ðm ¼ 16:1576Þ. The controlling partial differential equations (PDEs) are regenerated into ordinary differential equations (ODEs) by manipulating consistent conformity conversion and it is determined numerically by handling Runge Kutta Fehlberg method with shooting technique. It is noticed that the solid volume fraction and nanoparticle shape have powerful outputs in squeezing flow phenomena, the sphere shape nanoparticle in Cu – water and cylindrical shape in SWCNTs-water in the presence of magnetic field along with thermal radiation energy has better improvement on heat transfer as compared with the other nanoparticle shapes in different flow regimes

    Critical Invalidation of Temperature Dependence of Nanofluid Thermal Conductivity Enhancement

    Get PDF
    Of interest is the accurate measurement of the enhanced thermal conductivity of certain nanofluids free from the impact of natural convection. Owing to its simplicity, wide range of applicability and short response time, the transient hot-wire method (THWM) is frequently used to measure the thermal conductivity of fluids. In order to gain a sufficiently high accuracy, special care should be taken to assure that each measurement is not affected by initial heat supply delay, natural convection, and signal noise. In this study, it was found that there is a temperature limit when using THWM due to the incipience of natural convection. The results imply that the temperature-dependence of the thermal conductivity enhancement observed by other researchers might be misleading when ignoring the impact of natural convection; hence, it could not be used as supporting evidence of the effectiveness of micromixing due to Brownian motion. Thus, it is recommended that researchers report how they keep the impact of the natural convection negligible and check the integrity of their measurements in the future researches

    A Relation Between Near-Wall Particle-Hemodynamics and Onset of Thrombus Formation in Abdominal Aortic Aneurysms

    Get PDF
    A novel computational particle-hemodynamics analysis of key criteria for the onset of an intraluminal thrombus (ILT) in a patient-specific abdominal aortic aneurysm (AAA) is presented. The focus is on enhanced platelet and white blood cell residence times as well as their elevated surface-shear loads in near-wall regions of the AAA sac. The generalized results support the hypothesis that a patient's AAA geometry and associated particle-hemodynamics have the potential to entrap activated blood particles, which will play a role in the onset of ILT. Although the ILT history of only a single patient was considered, the modeling and simulation methodology provided allow for the development of an efficient computational tool to predict the onset of ILT formation in complex patient-specific cases

    Proper Orthogonal Decomposition as a technique for identifying two-phase flow pattern based on electrical impedance tomography

    Get PDF
    Collecting of very large amount of data from experimental measurement is a common practice in almost every scientific domains. There is a great need to have specific techniques capable of extracting synthetic information, which is essential for understanding and modelling the specific phenomena. The Proper Orthogonal Decomposition (POD) is one of the most powerful data analysis methods for multivariate and nonlinear phenomena. Generally, POD is a procedure that takes a given collection of input experimental or numerical data and creates an orthogonal basis constituted by functions estimated as the solutions of an integral eigenvalue problem known as a Fredholm equation. This paper proposes a novel approach by utilising POD to identify flow structure in horizontal pipeline, specially, for slag, plug and wavy stratified air-water flow regimes, , in which POD technique extends the current evaluation procedure of electrical impedance tomography [31]. This capability is extended by the implementation of POD as an identifier for typical horizontal two phase flow regimes. Direct POD method introduced by Lumley and Snapshot POD method introduced by Sirovich are applied The POD snapshot matrices are reconstructed from electrical tomography measurement under specific flow conditions. It is expected that this study may provide new knowledge on two phase flow dynamics in a horizontal pipeline and useful information for further prediction of multiphase flow regime
    • …
    corecore