73 research outputs found

    The thromboxane receptor antagonist NTP42 promotes beneficial adaptation and preserves cardiac function in experimental models of right heart overload

    Get PDF
    BackgroundPulmonary arterial hypertension (PAH) is a progressive disease characterized by increased pulmonary artery pressure leading to right ventricular (RV) failure. While current PAH therapies improve patient outlook, they show limited benefit in attenuating RV dysfunction. Recent investigations demonstrated that the thromboxane (TX) A2 receptor (TP) antagonist NTP42 attenuates experimental PAH across key hemodynamic parameters in the lungs and heart. This study aimed to validate the efficacy of NTP42:KVA4, a novel oral formulation of NTP42 in clinical development, in preclinical models of PAH while also, critically, investigating its direct effects on RV dysfunction.MethodsThe effects of NTP42:KVA4 were evaluated in the monocrotaline (MCT) and pulmonary artery banding (PAB) models of PAH and RV dysfunction, respectively, and when compared with leading standard-of-care (SOC) PAH drugs. In addition, the expression of the TP, the target for NTP42, was investigated in cardiac tissue from several other related disease models, and from subjects with PAH and dilated cardiomyopathy (DCM).ResultsIn the MCT-PAH model, NTP42:KVA4 alleviated disease-induced changes in cardiopulmonary hemodynamics, pulmonary vascular remodeling, inflammation, and fibrosis, to a similar or greater extent than the PAH SOCs tested. In the PAB model, NTP42:KVA4 improved RV geometries and contractility, normalized RV stiffness, and significantly increased RV ejection fraction. In both models, NTP42:KVA4 promoted beneficial RV adaptation, decreasing cellular hypertrophy, and increasing vascularization. Notably, elevated expression of the TP target was observed both in RV tissue from these and related disease models, and in clinical RV specimens of PAH and DCM.ConclusionThis study shows that, through antagonism of TP signaling, NTP42:KVA4 attenuates experimental PAH pathophysiology, not only alleviating pulmonary pathologies but also reducing RV remodeling, promoting beneficial hypertrophy, and improving cardiac function. The findings suggest a direct cardioprotective effect for NTP42:KVA4, and its potential to be a disease-modifying therapy in PAH and other cardiac conditions

    Thromboxane A2 signalling in humans : a ‘tail’ of two receptors

    No full text
    Since its discovery in 1975, we now have a wealth of knowledge relating to the biochemical, pharmacological and physiologic actions of thromboxane (TX) A2 and its related metabolites. These molecular insights have been greatly expedited by the molecular cloning and characterisation of a complementary (c) DNA for the human TXA receptor, now termed T Prostanoid or TP receptor, from a megakaryocytic / placental cDNA library in 1991 and later through the discovery of a cDNA encoding a second isoform of the human TP receptor in 1994. The requirement for two TP receptors in primates, but not in other species thus far investigated, is unclear but points to potential species-specific physiologic differences. In this review, I will describe some recent advances in the research field of TXA2/TP receptor signalling, focussing particularly on studies pertaining to the human TP receptor isoforms.Health Research BoardIrish Heart FoundationEnterprise IrelandWellcome TrustUniversity College Dublin President\u27s Awardti, ke,-SB01/09/201

    Thromboxane A2 signalling in humans : a ‘tail’ of two receptors

    Get PDF
    Since its discovery in 1975, we now have a wealth of knowledge relating to the biochemical, pharmacological and physiologic actions of thromboxane (TX) A2 and its related metabolites. These molecular insights have been greatly expedited by the molecular cloning and characterisation of a complementary (c) DNA for the human TXA receptor, now termed T Prostanoid or TP receptor, from a megakaryocytic / placental cDNA library in 1991 and later through the discovery of a cDNA encoding a second isoform of the human TP receptor in 1994. The requirement for two TP receptors in primates, but not in other species thus far investigated, is unclear but points to potential species-specific physiologic differences. In this review, I will describe some recent advances in the research field of TXA2/TP receptor signalling, focussing particularly on studies pertaining to the human TP receptor isoforms.Health Research BoardIrish Heart FoundationEnterprise IrelandWellcome TrustUniversity College Dublin President's Awardti, ke,-SB01/09/201

    Thromboxane A2 receptor gene regulation

    No full text
    In humans, TPα and TPβ isoforms of the thromboxane A2 receptor are transcriptionally regulated by distinct promoters, designated Prm1 and Prm3. Previous investigations identified two upstream repressor regions (URR) 1 and URR2 within Prm1. Herein, it was sought to characterize Prm1, identifying the factor(s) regulating URR1 and URR2 in human erythroleukemia (HEL) 92.1.7 cells. Genetic reporter assays and 5’ deletions confirmed the presence of URR1 and URR2 but also identified a third repressor, designated RR3, within the proximal “core” promoter. Bioinformatic analysis revealed several GC elements representing putative sites for Egr1/Sp1/Wilms tumor (WT)1 within URR1, URR2 and RR3. While mutation of three GC elements within URR1 and of an adjacent GC element suggested that repressor binding occurs through a cooperative mechanism, repressors binding to the single GC elements within URR2 and RR3 act independently to regulate Prm1. While EMSAs and supershift assays demonstrated that each of the GC elements can bind Egr1 and WT1 in vitro, chromatin immunoprecipitations established that WT1 is the factor predominantly bound to each of the repressor regions in vivo. Additionally, ectopic expression of -KTS isoforms of WT1 decreased Prm1-directed gene expression and TPα mRNA expression. Collectively, these data establish WT1 as a critical repressor of Prm1, suppressing TPα expression in the platelet progenitor megakaryoblastic HEL cells.Health Research BoardWellcome Trustte,ot,ke,en,-SB02/09/201

    Regulated expression of the prostacyclin receptor (IP) gene by androgens within the vasculature: Combined role for androgens and serum cholesterol

    No full text
    The prostanoid prostacyclin plays a key cardioprotective role within the vasculature. There is increasing evidence that androgens may also confer cardioprotection but through unknown mechanisms. This study investigated whether the androgen dihydrotestosterone (DHT) may regulate expression of the prostacyclin/I prostanoid receptor or, in short, the IP in platelet-progenitor megakaryoblastic and vascular endothelial cells. DHT significantly increased IP mRNA and protein expression, IP-induced cAMP generation and promoter (PrmIP)-directed gene expression in all cell types examined. The androgen-responsive region was localised to a cis-acting androgen response element (ARE), which lies in close proximity to a functional sterol response element (SRE) within the core promoter. In normal serum conditions, DHT increased IP expression through classic androgen receptor (AR) binding to the functional ARE within the PrmIP. However, under conditions of low-cholesterol, DHT led to further increases in IP expression through an indirect mechanism involving AR-dependent upregulation of SCAP expression and enhanced SREBP1 processing & binding to the SRE within the PrmIP. Chromatin immunoprecipitation assays confirmed DHT-induced AR binding to the ARE in vivo in cells cultured in normal serum while, in conditions of low cholesterol, DHT led to increased AR and SREBP1 binding to the functional ARE and SRE cis-acting elements, respectively, within the core PrmIP resulting in further increases in IP expression. Collectively, these data establish that the human IP gene is under the transcriptional regulation of DHT, where this regulation is further influenced by serum-cholesterol levels. This may explain, in part, some of the protective actions of androgens within the vasculature.European Commission - European Regional Development FundHealth Research BoardIrish Cancer SocietyProgramme for Research in Third Level Institutions (PRTLI; MolCellBiol)Movember Foundatio

    Thromboxane A2 receptor mediated activation of the mitogen activated protein kinase cascades in human uterine smooth muscle cells

    No full text
    Both thromboxane (TX) A2 and 8-epi prostaglandin (PG) F2alpha have been reported to stimulate mitogenesis of vascular smooth muscle (SM) in a number of species. However, TXA2 and 8-epiPGF2alpha mediated mitogenic signalling have not been studied in detail in human vascular SM. Thus, using the human uterine ULTR cell line as a model, we investigated TXA2 receptor (TP) mediated mitogenic signalling in cultured human vascular SM cells. Both the TP agonist U46619 and 8-epiPGF2alpha elicited time and concentration dependent activation of the extracellular signal regulated kinase (ERK)s and c-Jun N-terminal kinase (JNK)s in ULTR cells. Whereas the TP antagonist SQ29,548 abolished U46619-mediated signalling, it only partially inhibited 8-epiPGF2alpha mediated ERK and JNK activation in ULTR cells. Both U46619 and 8-epiPGF2alpha induced ERK activations were inhibited by the protein kinase (PK) C, PKA and phosphoinositide 3-kinase inhibitors GF 109203X, H-89 and wortmannin, respectively, but were unaffected by pertussis toxin. In addition, U46619 mediated ERK activation in ULTR cells involves transactivation of the EGF receptor. In humans, TXA2 signals through two distinct TP isoforms. In investigating the involvement of the TP isoforms in mitogenic signalling, both TPalpha and TPbeta, independently directed U46619 and 8-epiPGF2alpha mediated ERK and JNK activation in human embryonic kidney (HEK) 293 cells over-expressing the individual TP isoforms. However, in contrast to that which occurred in ULTR cells, SQ29,548 abolished 8-epiPGF2alpha mediated ERK and JNK activation through both TPalpha and TPbeta in HEK 293 cells providing further evidence that 8-epiPGF2alpha may signal through alternative receptors, in addition to the TPs, in human uterine ULTR cells.Health Research BoardWellcome TrustIrish Heart FoundationEnterprise Irelandke,ti, -SB01/09/201

    Prostacyclin receptors: Transcriptional regulation and novel signalling mechanisms

    No full text
    5th European Workshop on Lipid Mediators, Istanbul, Turkey, 23-24 October 2014The prostanoid Prostacyclin plays diverse physiologic roles within the vasculature and other systems, and is widely implicated in several cardiovascular, pulmonary and renal diseases. Despite this, knowledge of the factors regulating expression of the I prostanoid receptor (the IP) remained largely unknown. This review details recent advances in understanding the key transcriptional regulators determining expression of the PTGIR gene in the human vasculature and the identification of novel interacting partners of the IP that impact on its function therein. Included in this are the trans-acting factors that regulate expression of the PTGIR under basal- and regulated-conditions, particularly those determining its up-regulation in response to cellular differentiation, estrogen and low serum-cholesterol. Moreover, the functional implications of the interactions between the IP with PDZK1, a multi PDZ-domain containing protein essential for reverse-cholesterol transport and endothelialization, and the IP with IKEPP, the intestinal and kidney enriched PDZ protein, for the role of the prostacyclin-IP axis within the vasculature are reviewed.European Commission - European Regional Development FundHealth Research BoardIrish Cancer SocietyScience Foundation IrelandProgramme for Research in Third Level Institutes (PRTLI) 5MolCellBiol programmeWellcome Trus
    corecore