101 research outputs found

    Beta Oscillations in Working Memory, Executive Control of Movement and Thought, and Sensorimotor Function

    Get PDF
    Beta oscillations (~13 to 30Hz) have been observed during many perceptual, cognitive and motor processes in a plethora of brain recording studies. While the function of beta oscillations (hereafter ‘beta’ for short) is unlikely to be explained by any single monolithic description, we here discuss several convergent findings. In prefrontal cortex, increased beta appears at the end of a trial when working memory information needs to be erased. A similar clear-out function might apply during the stopping of action and the stopping of long-term memory retrieval (stopping thoughts), where increased prefrontal beta is also observed. A different apparent role for beta in prefrontal cortex occurs during the delay period of working memory tasks: it might serve to maintain the current contents and/or to prevent interference from distraction. We confront the challenge of relating these observations to the large literature on beta recorded from sensorimotor cortex. Potentially, the clear-out of working memory in prefrontal cortex has its counterpart in the post-movement clear-out of the motor plan in sensorimotor cortex. However, recent studies support alternative interpretations. In addition, we flag emerging research on different frequencies of beta and the relationship between beta and single neuron spiking. We also discuss where beta might be generated: basal ganglia, cortex, or both. We end by considering the clinical implications for adaptive deep brain stimulation

    Gearing up for action: attentive tracking dynamically tunes sensory and motor oscillations in the alpha and beta band

    Get PDF
    Allocation of attention during goal-directed behavior entails simultaneous processing of relevant and attenuation of irrelevant information. How the brain delegates such processes when confronted with dynamic (biological motion) stimuli and harnesses relevant sensory information for sculpting prospective responses remains unclear. We analyzed neuromagnetic signals that were recorded while participants attentively tracked an actor’s pointing movement that ended at the location where subsequently the response-cue indicated the required response. We found the observers’ spatial allocation of attention to be dynamically reflected in lateralized parieto-occipital alpha (8-12Hz) activity and to have a lasting influence on motor preparation. Specifically, beta (16-25Hz) power modulation reflected observers’ tendency to selectively prepare for a spatially compatible response even before knowing the required one. We discuss the observed frequency-specific and temporally evolving neural activity within a framework of integrated visuomotor processing and point towards possible implications about the mechanisms involved in action observation

    Estimating the contribution of assembly activity to cortical dynamics from spike and population measures

    Get PDF
    The hypothesis that cortical networks employ the coordinated activity of groups of neurons, termed assemblies, to process information is debated. Results from multiple single-unit recordings are not conclusive because of the dramatic undersampling of the system. However, the local field potential (LFP) is a mesoscopic signal reflecting synchronized network activity. This raises the question whether the LFP can be employed to overcome the problem of undersampling. In a recent study in the motor cortex of the awake behaving monkey based on the locking of coincidences to the LFP we determined a lower bound for the fraction of spike coincidences originating from assembly activation. This quantity together with the locking of single spikes leads to a lower bound for the fraction of spikes originating from any assembly activity. Here we derive a statistical method to estimate the fraction of spike synchrony caused by assemblies—not its lower bound—from the spike data alone. A joint spike and LFP surrogate data model demonstrates consistency of results and the sensitivity of the method. Combining spike and LFP signals, we obtain an estimate of the fraction of spikes resulting from assemblies in the experimental data

    Noise Suppression and Surplus Synchrony by Coincidence Detection

    Get PDF
    The functional significance of correlations between action potentials of neurons is still a matter of vivid debates. In particular it is presently unclear how much synchrony is caused by afferent synchronized events and how much is intrinsic due to the connectivity structure of cortex. The available analytical approaches based on the diffusion approximation do not allow to model spike synchrony, preventing a thorough analysis. Here we theoretically investigate to what extent common synaptic afferents and synchronized inputs each contribute to closely time-locked spiking activity of pairs of neurons. We employ direct simulation and extend earlier analytical methods based on the diffusion approximation to pulse-coupling, allowing us to introduce precisely timed correlations in the spiking activity of the synaptic afferents. We investigate the transmission of correlated synaptic input currents by pairs of integrate-and-fire model neurons, so that the same input covariance can be realized by common inputs or by spiking synchrony. We identify two distinct regimes: In the limit of low correlation linear perturbation theory accurately determines the correlation transmission coefficient, which is typically smaller than unity, but increases sensitively even for weakly synchronous inputs. In the limit of high afferent correlation, in the presence of synchrony a qualitatively new picture arises. As the non-linear neuronal response becomes dominant, the output correlation becomes higher than the total correlation in the input. This transmission coefficient larger unity is a direct consequence of non-linear neural processing in the presence of noise, elucidating how synchrony-coded signals benefit from these generic properties present in cortical networks

    The Dynamics of Sensorimotor Cortical Oscillations during the Observation of Hand Movements: An EEG Study

    Get PDF
    Background The observation of action done by others determines a desynchronization of the rhythms recorded from cortical central regions. Here, we examined whether the observation of different types of hand movements (target directed, non-target directed, cyclic and non-cyclic) elicits different EEG cortical temporal patterns. Methodology Video-clips of four types of hand movements were shown to right-handed healthy participants. Two were target directed (grasping and pointing) motor acts; two were non-target directed (supinating and clenching) movements. Grasping and supinating were performed once, while pointing and clenching twice (cyclic movements). High-density EEG was recorded and analyzed by means of wavelet transform, subdividing the time course in time bins of 200 ms. The observation of all presented movements produced a desynchronization of alpha and beta rhythms in central and parietal regions. The rhythms desynchronized as soon as the hand movement started, the nadir being reached around 700 ms after movement onset. At the end of the movement, a large power rebound occurred for all bands. Target and non-target directed movements produced an alpha band desynchronization in the central electrodes at the same time, but with a stronger desynchronization and a prolonged rebound for target directed motor acts. Most interestingly, there was a clear correlation between the velocity profile of the observed movements and beta band modulation. Significance Our data show that the observation of motor acts determines a modulation of cortical rhythm analogous to that occurring during motor act execution. In particular, the cortical motor system closely follows the velocity of the observed movements. This finding provides strong evidence for the presence in humans of a mechanism (mirror mechanism) mapping action observation on action execution motor programs

    State-Space Analysis of Time-Varying Higher-Order Spike Correlation for Multiple Neural Spike Train Data

    Get PDF
    Precise spike coordination between the spiking activities of multiple neurons is suggested as an indication of coordinated network activity in active cell assemblies. Spike correlation analysis aims to identify such cooperative network activity by detecting excess spike synchrony in simultaneously recorded multiple neural spike sequences. Cooperative activity is expected to organize dynamically during behavior and cognition; therefore currently available analysis techniques must be extended to enable the estimation of multiple time-varying spike interactions between neurons simultaneously. In particular, new methods must take advantage of the simultaneous observations of multiple neurons by addressing their higher-order dependencies, which cannot be revealed by pairwise analyses alone. In this paper, we develop a method for estimating time-varying spike interactions by means of a state-space analysis. Discretized parallel spike sequences are modeled as multi-variate binary processes using a log-linear model that provides a well-defined measure of higher-order spike correlation in an information geometry framework. We construct a recursive Bayesian filter/smoother for the extraction of spike interaction parameters. This method can simultaneously estimate the dynamic pairwise spike interactions of multiple single neurons, thereby extending the Ising/spin-glass model analysis of multiple neural spike train data to a nonstationary analysis. Furthermore, the method can estimate dynamic higher-order spike interactions. To validate the inclusion of the higher-order terms in the model, we construct an approximation method to assess the goodness-of-fit to spike data. In addition, we formulate a test method for the presence of higher-order spike correlation even in nonstationary spike data, e.g., data from awake behaving animals. The utility of the proposed methods is tested using simulated spike data with known underlying correlation dynamics. Finally, we apply the methods to neural spike data simultaneously recorded from the motor cortex of an awake monkey and demonstrate that the higher-order spike correlation organizes dynamically in relation to a behavioral demand
    corecore