56 research outputs found

    Enhanced osteogenesis of human urine-derived stem cells by direct delivery of 30Kc19α–Lin28A protein

    Get PDF
    Urine-derived stem cells (USCs) are a promising source for regenerative medicine because of their advantages such as easy and non-invasive collection from the human body, stable expansion, and the potential to differentiate into multiple lineages, including osteoblasts. In this study, we propose a strategy to enhance the osteogenic potential of human USCs using Lin28A, a transcription factor that inhibits let-7 miRNA processing. To address concerns regarding the safety of foreign gene integration and potential risk of tumorigenicity, we intracellularly delivered Lin28A as a recombinant protein fused with a cell-penetrating and protein-stabilizing protein, 30Kc19α. 30Kc19α–Lin28A fusion protein exhibited improved thermal stability and was delivered into USCs without significant cytotoxicity. 30Kc19α–Lin28A treatment elevated calcium deposition and upregulated several osteoblast-specific gene expressions in USCs derived from multiple donors. Our results indicate that intracellularly delivered 30Kc19α–Lin28A enhances the osteoblastic differentiation of human USCs by affecting the transcriptional regulatory network involved in metabolic reprogramming and stem cell potency. Therefore, 30Kc19α–Lin28A may provide a technical advancement toward developing clinically feasible strategies for bone regeneration

    Inhibitory Effect of Chlorogenic Acid Analogues Comprising Pyridine and Pyrimidine on α-MSH-Stimulated Melanogenesis and Stability of Acyl Analogues in Methanol

    No full text
    In continuation of studies for α-MSH stimulated melanogenesis inhibitors, we have evaluated the design, synthesis, and activity of a new series of chlorogenic acid (CGA) analogues comprising pyridine, pyrimidine, and diacyl derivatives. Among nineteen synthesized compounds, most of them (fifteen) exhibited better inhibitions of melanin formation in B16 melanoma cells. The results illustrated that a pyridine analogue 6f and a diacyl derivative 13a of CGA showed superior inhibition profiles (IC50: 2.5 ± 0.7 μM and 1.1 ± 0.1 μM, respectively) of α-MSH activities than positive controls, kojic acid and arbutin (IC50: 54 ± 1.5 μM and 380 ± 9.5 μM, respectively). The SAR studies showed that both –CF3 and –Cl groups exhibited better inhibition at the meta position on benzylamine than their ortho and para positions. In addition, the stability of diacyl analogues of CGA in methanol monitored by HPLC for 28 days indicated the steric bulkiness of acyl substituents as a key factor in their stability

    Metallic Fuel Fabrication Process Development in Remote Fuel Fabrication Mock-Up at KAERI

    No full text
    This paper presents a remote testbed for metallic fuel fabrication using surrogates or depleted uranium. The testbed named “remote fuel fabrication mock-up (RFFM)” was created at the Korea Atomic Energy Research Institute and specifically designed to incorporate remote operation and maintenance. The subsystems of the RFFM are described, and test results regarding remotely conducted metallic fuel slug fabrication at the RFFM are also presented. After fabricating fuel slugs using copper ingots, their specifications and properties were analyzed and evaluated using chemical analysis, radiographic tests, and diameter and weight measurements. Analysis results showed that the fabricated metallic fuel slugs have an acceptance rate of more than 90% and a casting ratio (ratio of weight of injected metal to charged metal) of more than 0.7. Moreover, operations involving remote handling of in-cell equipment were also satisfactory

    Ru(II)-Catalyzed Site-Selective Hydroxylation of Flavone and Chromone Derivatives: The Importance of the 5-Hydroxyl Motif for the Inhibition of Aurora Kinases

    No full text
    An efficient protocol for Ru(II)-catalyzed direct C-H oxygenation of a broad range of flavone and chromone substrates was developed. This convenient and powerful synthetic tool allows for the rapid installation of the hydroxyl group into the flavone, chromone, and other related scaffolds and opens the way for analog synthesis of highly potent Aurora kinase inhibitors. The molecular docking simulations indicate that the formation of bidentate H-bonding patterns in the hinge regions between the 5-hydroxyflavonoids and Ala213 was the significant binding force, which is consistent with experimental and computational findings. © 2015 American Chemical Society. (Chemical Presented)114141sciescopu

    Higher Physical Activity Is Associated with Increased Attentional Network Connectivity in the Healthy Elderly

    Get PDF
    The purpose of this study was to demonstrate the potential alterations in structural network properties related to physical activity (PA) in healthy elderly. We recruited 76 elderly individuals with normal cognition from Samsung Medical Center in Seoul, Korea. All participants underwent the Cambridge Neuropsychological Test Automated Battery and 3.0T brain magnetic resonance imaging (MRI). Participants were subdivided into quartiles according to the International Physical Activity Questionnaire scores, which represents the amount of PA. Through graph theory based analyses, we compared global and local network topologies according to PA quartile. The higher PA group demonstrated better performance in speed processing compared to the lower PA group. Regional nodal strength also significantly increased in the higher PA group, which involved the bilateral middle frontal, bilateral inferior parietal, right medial orbitofrontal, right superior, and middle temporal gyri. These results were further replicated when the highest and the lowest quartile groups were compared in terms of regional nodal strengths and local efficiency. Our findings that the regional nodal strengths associated with the attentional network were increased in the higher PA group suggest the preventive effects of PA on age-related cognitive decline, especially in attention

    Higher Physical Activity is Associated with Increased Attentional Network Connectivity in the Healthy Elderly

    No full text
    The purpose of this study was to demonstrate the potential alterations in structural network properties related to physical activity (PA) in healthy elderly. We recruited 76 elderly individuals with normal cognition from Samsung Medical Center in Seoul, Korea. All participants underwent the Cambridge Neuropsychological Test Automated Battery and 3.0T brain magnetic resonance imaging (MRI). Participants were subdivided into quartiles according to the International Physical Activity Questionnaire scores, which represents the amount of PA. Through graph theory based analyses, we compared global and local network topologies according to PA quartile. The higher PA group demonstrated better performance in speed processing compared to the lower PA group. Regional nodal strength also significantly increased in the higher PA group, which involved the bilateral middle frontal, bilateral inferior parietal, right medial orbitofrontal, right superior and middle temporal gyri. These results were further replicated when the highest and the lowest quartile groups were compared in terms of regional nodal strengths and local efficiency. Our findings that the regional nodal strengths associated with the attentional network were increased in the higher PA group suggest the preventive effects of PA on age-related cognitive decline, especially in attention

    Structural Brain Changes after Traditional and Robot-Assisted Multi-Domain Cognitive Training in Community-Dwelling Healthy Elderly

    No full text
    <div><p>The purpose of this study was to investigate if multi-domain cognitive training, especially robot-assisted training, alters cortical thickness in the brains of elderly participants. A controlled trial was conducted with 85 volunteers without cognitive impairment who were 60 years old or older. Participants were first randomized into two groups. One group consisted of 48 participants who would receive cognitive training and 37 who would not receive training. The cognitive training group was randomly divided into two groups, 24 who received traditional cognitive training and 24 who received robot-assisted cognitive training. The training for both groups consisted of daily 90-min-session, five days a week for a total of 12 weeks. The primary outcome was the changes in cortical thickness. When compared to the control group, both groups who underwent cognitive training demonstrated attenuation of age related cortical thinning in the frontotemporal association cortices. When the robot and the traditional interventions were directly compared, the robot group showed less cortical thinning in the anterior cingulate cortices. Our results suggest that cognitive training can mitigate age-associated structural brain changes in the elderly.</p><p>Trial Registration</p><p>ClnicalTrials.gov <a href="https://clinicaltrial.gov/ct2/show/NCT01596205?term=NCT01596205&rank=1" target="_blank">NCT01596205</a></p></div
    corecore