10 research outputs found

    Piezoelectric Phononic Plates: Retrieving the Frequency Band Structure via All-electric Experiments

    Full text link
    We propose an experimental technique based on all-electric measurements to retrieve the frequency response of a one-dimensional piezoelectric phononic crystal plate, structured periodically with millimeter-scaled metallic strips on its two surfaces. The metallic electrodes, used for the excitation of Lamb-like guided modes in the plate, ensure at the same time control of their dispersion by means of externally loaded electric circuits that offer non-destructive tunability in the frequency response of these structures. Our results, in very good agreement with finite-element numerical predictions, reveal interesting symmetry aspects that are employed to analyze the frequency band structure of such crystals. More importantly, Lamb-like guided modes interact with electric-resonant bands induced by inductance loads on the plate, whose form and symmetry are discussed and analyzed in depth, showing unprecedented dispersion characteristics.Comment: This is the version of the article before peer review or editing, as submitted by an author to Smart Materials and Structures. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at https://doi.org/10.1088/1361-665X/ab4aa

    Design and Fabrication of Bioinspired Hierarchical Dissipative Elastic Metamaterials

    Get PDF
    Hierarchical structures with constituents over multiple length scales are found in various natural materials like bones, shells, spider silk and others, all of which display enhanced quasi-static mechanical properties, such as high specific strength, stiffness and toughness. At the same time, the role of hierarchy on the dynamic behaviour of metamaterials remains largely unexplored. This study assesses the effect of bio-inspired hierarchical organization as well as of viscoelasticity on the wave attenuation properties of continuous mechanical metamaterials. We consider single-phase metamaterials formed by self-similar unit cells with different hierarchical levels and types of hierarchy. Results highlight a number of advantages through the introduction of structural hierarchy. Band gaps relative to the corresponding non-hierarchical structures are mostly preserved, while additional "hierarchically-induced" band gaps appear. Additionally, the hierarchical configuration allows the tuning of the band gap frequencies of regular metamaterial to lower frequencies, with a simultaneous significant reduction of the global structural weight. We show that even small viscoelastic effects, not treated in the current literature, are essential in determining this behaviour. The approach we propose allows the addition of hierarchical elements to existing metamaterial configurations, with the corresponding improvement of the wave damping properties, thus providing indications for the design of structures for practical applications

    Hierarchical large-scale elastic metamaterials for passive seismic wave mitigation

    Get PDF
    Large scale elastic metamaterials have recently attracted increasing interest in the scientific community for their potential as passive isolation structures for seismic waves. In particular, so-called "seismic shields"have been proposed for the protection of large areas where other isolation strategies (e.g. dampers) are not workable solutions. In this work, we investigate the feasibility of an innovative design based on hierarchical design of the unit cell, i.e. a structure with a self-similar geometry repeated at different scales. Results show how the introduction of hierarchy allows the conception of unit cells exhibiting reduced size with respect to the wavelength while maintaining the same or improved isolation efficiency at frequencies of interest for earthquake engineering. This allows to move closer to the practical realization of such seismic shields, where low-frequency operation and acceptable size are both essential characteristics for feasibility

    Tunable phononic structures using Lamb waves in a piezoceramic plate

    No full text
    International audienc

    Application of a Laser-Based Time Reversal Algorithm for Impact Localization in a Stiffened Aluminum Plate

    Get PDF
    Non-destructive testing and structural health monitoring (SHM) techniques using elastic guided waves are often limited by material inhomogeneity or geometrical irregularities of the tested parts. This is a severe restriction in many fields of engineering such as aerospace or aeronautics, where typically one needs to monitor composite structures with varying mechanical properties and complex geometries. This is particularly true in the case of multiscale composite materials, where anisotropy and material gradients may be present. Here, we provide an impact localization algorithm based on time reversal and laser vibrometry to cope with this type of complexity. The proposed approach is shown to be insensitive to local elastic wave velocity or geometrical features. The technique is based on the correlation of the measured impact response and a set of measured test data acquired at various grid points along the specimen surface, allowing high resolution in the determination of the impact point. We present both numerical finite element simulations and experimental measurements to support the proposed procedure, showing successful implementation on an eccentrically stiffened aluminum plate. The technique holds promise for advanced SHM, potentially in real time, of geometrically complex composite structures

    Experimental full wavefield reconstruction and band diagram analysis in a single-phase phononic plate with internal

    Get PDF
    Research on phononic crystal architectures has produced many interesting designs in the past years, with useful wave manipulation properties. However, not all of the proposed designs can lead to convenient realizations for practical applications, and only a limited number of them have actually been tested experimentally to verify numerical estimations and demonstrate their feasibility. In this work, we propose a combined numerical-experimental procedure to characterize the dynamic behavior of metamaterials, starting from a simplied 2D design to a real 3D manufacturing structure. To do this, we consider a new simplified design of a resonator-type geometry for a phononic crystal, and verify its wave filtering properties in wave propagation experiments. The proposed geometry exploits a circular distribution of cavities in a homogeneous material, leading to a central resonator surrounded by thin ligaments and an external matrix. Parametric simulations are performed to determine the optimal thickness of this design leading to a large full band gap in the kHz range. Full field experimental characterization of the resulting phononic crystal using a scanning laser Doppler vibrometer is then performed, showing excellent agreement with numerically predicted band gap properties and with their resulting effects on propagating waves. The outlined procedure can serve as a useful step towards a standardization of metamaterial development and validation procedures