299 research outputs found

    Urban Land Cover Classification with Missing Data Modalities Using Deep Convolutional Neural Networks

    Get PDF
    Automatic urban land cover classification is a fundamental problem in remote sensing, e.g. for environmental monitoring. The problem is highly challenging, as classes generally have high inter-class and low intra-class variance. Techniques to improve urban land cover classification performance in remote sensing include fusion of data from different sensors with different data modalities. However, such techniques require all modalities to be available to the classifier in the decision-making process, i.e. at test time, as well as in training. If a data modality is missing at test time, current state-of-the-art approaches have in general no procedure available for exploiting information from these modalities. This represents a waste of potentially useful information. We propose as a remedy a convolutional neural network (CNN) architecture for urban land cover classification which is able to embed all available training modalities in a so-called hallucination network. The network will in effect replace missing data modalities in the test phase, enabling fusion capabilities even when data modalities are missing in testing. We demonstrate the method using two datasets consisting of optical and digital surface model (DSM) images. We simulate missing modalities by assuming that DSM images are missing during testing. Our method outperforms both standard CNNs trained only on optical images as well as an ensemble of two standard CNNs. We further evaluate the potential of our method to handle situations where only some DSM images are missing during testing. Overall, we show that we can clearly exploit training time information of the missing modality during testing

    Learning Latent Representations of Bank Customers With The Variational Autoencoder

    Get PDF
    Learning data representations that reflect the customers' creditworthiness can improve marketing campaigns, customer relationship management, data and process management or the credit risk assessment in retail banks. In this research, we adopt the Variational Autoencoder (VAE), which has the ability to learn latent representations that contain useful information. We show that it is possible to steer the latent representations in the latent space of the VAE using the Weight of Evidence and forming a specific grouping of the data that reflects the customers' creditworthiness. Our proposed method learns a latent representation of the data, which shows a well-defied clustering structure capturing the customers' creditworthiness. These clusters are well suited for the aforementioned banks' activities. Further, our methodology generalizes to new customers, captures high-dimensional and complex financial data, and scales to large data sets.Comment: arXiv admin note: substantial text overlap with arXiv:1806.0253

    Deep Generative Models for Reject Inference in Credit Scoring

    Get PDF
    Credit scoring models based on accepted applications may be biased and their consequences can have a statistical and economic impact. Reject inference is the process of attempting to infer the creditworthiness status of the rejected applications. In this research, we use deep generative models to develop two new semi-supervised Bayesian models for reject inference in credit scoring, in which we model the data generating process to be dependent on a Gaussian mixture. The goal is to improve the classification accuracy in credit scoring models by adding reject applications. Our proposed models infer the unknown creditworthiness of the rejected applications by exact enumeration of the two possible outcomes of the loan (default or non-default). The efficient stochastic gradient optimization technique used in deep generative models makes our models suitable for large data sets. Finally, the experiments in this research show that our proposed models perform better than classical and alternative machine learning models for reject inference in credit scoring

    The antihypertensive and diuretic effects of amiloride and of its combination with hydrochlorothiazide

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/116910/1/cpt196893350.pd

    Deep Divergence-Based Approach to Clustering

    Get PDF
    A promising direction in deep learning research consists in learning representations and simultaneously discovering cluster structure in unlabeled data by optimizing a discriminative loss function. As opposed to supervised deep learning, this line of research is in its infancy, and how to design and optimize suitable loss functions to train deep neural networks for clustering is still an open question. Our contribution to this emerging field is a new deep clustering network that leverages the discriminative power of information-theoretic divergence measures, which have been shown to be effective in traditional clustering. We propose a novel loss function that incorporates geometric regularization constraints, thus avoiding degenerate structures of the resulting clustering partition. Experiments on synthetic benchmarks and real datasets show that the proposed network achieves competitive performance with respect to other state-of-the-art methods, scales well to large datasets, and does not require pre-training steps

    Classification of postoperative surgical site infections from blood measurements with missing data using recurrent neural networks

    Full text link
    Clinical measurements that can be represented as time series constitute an important fraction of the electronic health records and are often both uncertain and incomplete. Recurrent neural networks are a special class of neural networks that are particularly suitable to process time series data but, in their original formulation, cannot explicitly deal with missing data. In this paper, we explore imputation strategies for handling missing values in classifiers based on recurrent neural network (RNN) and apply a recently proposed recurrent architecture, the Gated Recurrent Unit with Decay, specifically designed to handle missing data. We focus on the problem of detecting surgical site infection in patients by analyzing time series of their blood sample measurements and we compare the results obtained with different RNN-based classifiers

    The diuretic effect of desmethyl‐pipazuroyl‐guanidine (MK‐870) in man

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/117149/1/cpt19689171.pd

    Sechs Wege zur Transformation

    Get PDF
    Die sozial-Ăśkologische Transformation der Wirtschaft ist nicht nur eine Forderung von Politik, Zivilgesellschaft und Wissenschaft. Einige Unternehmen haben sich bereits selbst erfolgreich auf den Weg zu einer nachhaltigen Erneuerung gemacht. Welche Vorstellungen haben diese Vorreiter von einer nachhaltigen und transformativen Wirtschaft
    • …
    corecore