197 research outputs found

    Ultra-trace element characterization of the central Ottawa River basin using a rapid, flexible, and low-volume ICP-MS method

    Get PDF
    Ultra-trace (<1 ng g-1) rare earth elements and yttrium (REE+Y) and high field strength element (HFSE) geochemistry of freshwater can constrain element sources, aqueous processes in hydrologic catchments, and the signature of dissolved terrestrial fluxes to the oceans. This study details an adapted method capable of quantifying ≥38 elements (including all REE+Y, Nb, Ta, Zr, Hf, Mo, W, Th, U) with minimal sample preparation in natural water aliquots as low as ≤2 mL. The method precision and accuracy are demonstrated using measurement of the National Research Council – Conseil national de recherches Canada (NRC-CNRC) river water certified reference material (CRM) SLRS-6 sampled from the Ottawa River (OR). Data from SLRS CRM are compared to those of new, filtered (HREE-enriched REE+Y patterns, small natural positive Y and Gd anomalies, and negative Eu and Ce anomalies. These REE+Y features are coherent downstream in the OR apart from amplification of Eu and Ce anomalies during REE removal/dilution. The OR samples capture a downstream decrease in sparingly soluble HFSE (Th, Nb, Ta, Zr, Hf), presumably related to their colloid-particulate removal from the dissolved load, accompanied by crustal Zr/Hf (32.5 ± 5.1) and supercrustal Nb/Ta (25.1 ± 7.7) ratios. Subcrustal Th/U (0.17-0.96) and supercrustal Mo/W (12.0-74.5) ratios in all ORB waters indicate preferential release and aqueous solubility of U>Th and Mo>W, with the latter attributed primarily to preferential W adsorption on soil or upstream aquatic (oxy)(hydr)oxide surfaces

    File 1: Robust laser ablation Lu–Hf dating of apatite: an empirical evaluation

    No full text
    Concordia and weighted mean U–Pb plots for the secondary zircon, apatite, monazite and titanite standards. MSWD, mean squared weighted deviation; n, number of analyses

    File 10: Robust laser ablation Lu–Hf dating of apatite: an empirical evaluation

    No full text
    Full Concordia plots for the zircon U–Pb data from the Reynolds–Anmatjira samples. The age calculation is based on the youngest concordant grains (green symbols) only. MSWD, mean squared weighted deviation; P(χ2), Chi-squared probability for a single data population

    Petrographic Microscopy with Ray Tracing and Segmentation from Multi-Angle Polarisation Whole-Slide Images

    No full text
    &lsquo;Slide scanners&rsquo; are rapid optical microscopes equipped with automated and accurate x-y travel stages with virtual z-motion that cannot be rotated. In biomedical microscopic imaging, they are widely deployed to generate whole-slide images (WSI) of tissue samples in various modes of illumination. The availability of WSI has motivated the development of instrument-agnostic advanced image analysis software, helping drug development, pathology, and many other areas of research. Slide scanners are now being modified to enable polarised petrographic microscopy by simulating stage rotation with the acquisition of multiple rotation angles of the polariser&ndash;analyser pair for observing randomly oriented anisotropic materials. Here we report on the calibration strategy of one repurposed slide scanner and describe a pilot image analysis pipeline designed to introduce the wider audience to the complexity of performing computer-assisted feature recognition on mineral groups. The repurposed biological scanner produces transmitted light plane- and cross-polarised (TL-PPL and XPL) and unpolarised reflected light (RL) WSI from polished thin sections or slim epoxy mounts at various magnifications, yielding pixel dimensions from ca. 2.7 &times; 2.7 to 0.14 &times; 0.14 &micro;m. A data tree of 14 WSI is regularly obtained, containing two RL and six of each PPL and XPL WSI (at 18&deg; rotation increments). This pyramidal image stack is stitched and built into a local server database simultaneously with acquisition. The pyramids (multi-resolution &lsquo;cubes&rsquo;) can be viewed with freeware locally deployed for teaching petrography and collaborative research. The main progress reported here concerns image analysis with a pilot open-source software pipeline enabling semantic segmentation on petrographic imagery. For this purpose, all WSI are post-processed and aligned to a &lsquo;fixed&rsquo; reflective surface (RL), and the PPL and XPL stacks are then summarised in one image, each with ray tracing that describes visible light reflection, absorption, and O- and E-wave interference phenomena. The maximum red-green-blue values were found to best overcome the limitation of refractive index anisotropy for segmentation based on pixel-neighbouring feature maps. This strongly reduces the variation in dichroism in PPL and interference colour in XPL. The synthetic ray trace WSI is then combined with one RL to estimate modal mineralogy with multi-scale algorithms originally designed for object-based cell segmentation in pathological tissues. This requires generating a small number of polygonal expert annotations that inform a training dataset, enabling on-the-fly machine learning classification into mineral classes. The accuracy of the approach was tested by comparison with modal mineralogy obtained by energy-dispersive spectroscopy scanning electron microscopy (SEM-EDX) for a suite of rocks of simple mineralogy (granulites and peridotite). The strengths and limitations of the pixel-based classification approach are described, and phenomena from sample preparation imperfections to semantic segmentation artefacts around fine-grained minerals and/or of indiscriminate optical properties are discussed. Finally, we provide an outlook on image analysis strategies that will improve the status quo by using the first-pass mineralogy identification from optical WSI to generate a location grid to obtain targeted chemical data (e.g., by SEM-EDX) and by considering the rock texture

    File 9: Robust laser ablation Lu–Hf dating of apatite: an empirical evaluation

    No full text
    Thin section microphotographs from the Taratap Granodiorite. (A) Apatite cogenetic with allanite. (B) Apatite overgrown by monazite. (C, D) Titanite in chlorite ((C) transmitted light image; (D) reflective light image; circle symbols are laser ablation spots)

    File 6: Robust laser ablation Lu–Hf dating of apatite: an empirical evaluation

    No full text
    Apatite Lu–Hf results for all analysed samples (tab names refer to the four study areas), including data for the analytical standards. Columns D–L report isotopic ratios and uncertainties that are not corrected against the OD-306 reference apatite. Columns M–Q report the matrix-corrected (against OD-306 apatite) Lu–Hf data that were used to calculate the inverse isochrons and resulting Lu–Hf ages. Corrected single spot 176Hf/176Lu ratios and associated ages for individual grains (where relevant) are reported in columns W–AA. See text for more details. In addition, grain sizes are reported for the Queensland samples in column AB (surface area in mm2). A qualitative assessment of the intactness of the grains is reported in column AC

    Petrographic Microscopy with Ray Tracing and Segmentation from Multi-Angle Polarisation Whole-Slide Images

    No full text
    ‘Slide scanners’ are rapid optical microscopes equipped with automated and accurate x-y travel stages with virtual z-motion that cannot be rotated. In biomedical microscopic imaging, they are widely deployed to generate whole-slide images (WSI) of tissue samples in various modes of illumination. The availability of WSI has motivated the development of instrument-agnostic advanced image analysis software, helping drug development, pathology, and many other areas of research. Slide scanners are now being modified to enable polarised petrographic microscopy by simulating stage rotation with the acquisition of multiple rotation angles of the polariser–analyser pair for observing randomly oriented anisotropic materials. Here we report on the calibration strategy of one repurposed slide scanner and describe a pilot image analysis pipeline designed to introduce the wider audience to the complexity of performing computer-assisted feature recognition on mineral groups. The repurposed biological scanner produces transmitted light plane- and cross-polarised (TL-PPL and XPL) and unpolarised reflected light (RL) WSI from polished thin sections or slim epoxy mounts at various magnifications, yielding pixel dimensions from ca. 2.7 × 2.7 to 0.14 × 0.14 µm. A data tree of 14 WSI is regularly obtained, containing two RL and six of each PPL and XPL WSI (at 18° rotation increments). This pyramidal image stack is stitched and built into a local server database simultaneously with acquisition. The pyramids (multi-resolution ‘cubes’) can be viewed with freeware locally deployed for teaching petrography and collaborative research. The main progress reported here concerns image analysis with a pilot open-source software pipeline enabling semantic segmentation on petrographic imagery. For this purpose, all WSI are post-processed and aligned to a ‘fixed’ reflective surface (RL), and the PPL and XPL stacks are then summarised in one image, each with ray tracing that describes visible light reflection, absorption, and O- and E-wave interference phenomena. The maximum red-green-blue values were found to best overcome the limitation of refractive index anisotropy for segmentation based on pixel-neighbouring feature maps. This strongly reduces the variation in dichroism in PPL and interference colour in XPL. The synthetic ray trace WSI is then combined with one RL to estimate modal mineralogy with multi-scale algorithms originally designed for object-based cell segmentation in pathological tissues. This requires generating a small number of polygonal expert annotations that inform a training dataset, enabling on-the-fly machine learning classification into mineral classes. The accuracy of the approach was tested by comparison with modal mineralogy obtained by energy-dispersive spectroscopy scanning electron microscopy (SEM-EDX) for a suite of rocks of simple mineralogy (granulites and peridotite). The strengths and limitations of the pixel-based classification approach are described, and phenomena from sample preparation imperfections to semantic segmentation artefacts around fine-grained minerals and/or of indiscriminate optical properties are discussed. Finally, we provide an outlook on image analysis strategies that will improve the status quo by using the first-pass mineralogy identification from optical WSI to generate a location grid to obtain targeted chemical data (e.g., by SEM-EDX) and by considering the rock texture

    A new compositional estimate for refractory lower continental crust with implications for the first terrestrial Pb-isotope paradox

    No full text
    The lower continental crust, representing up to 50% of the continental mass, is largely inaccessible, making its composition difficult to constrain. Previous composite models based on geophysical evidence and geochemical data of granulite terrains and xenoliths have proposed varying results, from a mafic, relatively refractory lower crust to an intermediate-felsic, more enriched composition. Here, we investigated the mineralogy and geochemistry of predominantly mafic granulite xenoliths from eastern Australia and the Kola Peninsula, Russia, using an in situ analytical approach that minimises host magma contamination. The resulting xenolith compositions are variably and often strongly depleted in most highly incompatible trace elements, including the heat-producing elements. These xenoliths represent an extremely refractory component of the lower continental crust, likely formed after high degrees of partial melting or crystallisation from a depleted source. A lower crust composed solely of this refractory endmember would be too exhausted in heat-producing elements to satisfy heat-flow constraints. However, a volumetrically significant component of the lower crust is this mafic and refractory material, combined with undifferentiated material and a felsic or metapelitic portion. Using geophysical constraints on proportions of refractory (55%), undepleted (38%) and enriched (7%) components, a new estimate for average lower continental crust that satisfies heat flow limits was calculated, including for elements such as Be, B, Cs, W and Tl, where previous estimates relied on very few data. Finally, we show that because much of the lower continental crust is so refractory and depleted in incompatible elements, it is unlikely to be a reservoir that can balance radiogenic isotope (unradiogenic Pb) and trace element ratios (e.g. Rb/Cs, Nb/Ta) for which bulk silicate Earth departs from chondritic ratios.</p

    File 3: Robust laser ablation Lu–Hf dating of apatite: an empirical evaluation

    No full text
    Isochron and weighted mean plots for the Lu–Hf matrix-correction standard (OD-306) and secondary standards HR-1 and Bamble-1. MSWD, mean squared weighted deviation; n, number of analyses; P(χ2), Chi-squared probability for a single data population. Where required (i.e. insufficient spread along the isochron), the isochrons were anchored to an initial 177Hf/176Hf ratio of 3.55 ± 0.05 (see text)
    corecore