1,131 research outputs found

    Light Field Denoising via Anisotropic Parallax Analysis in a CNN Framework

    Full text link
    Light field (LF) cameras provide perspective information of scenes by taking directional measurements of the focusing light rays. The raw outputs are usually dark with additive camera noise, which impedes subsequent processing and applications. We propose a novel LF denoising framework based on anisotropic parallax analysis (APA). Two convolutional neural networks are jointly designed for the task: first, the structural parallax synthesis network predicts the parallax details for the entire LF based on a set of anisotropic parallax features. These novel features can efficiently capture the high frequency perspective components of a LF from noisy observations. Second, the view-dependent detail compensation network restores non-Lambertian variation to each LF view by involving view-specific spatial energies. Extensive experiments show that the proposed APA LF denoiser provides a much better denoising performance than state-of-the-art methods in terms of visual quality and in preservation of parallax details

    Accurate Light Field Depth Estimation with Superpixel Regularization over Partially Occluded Regions

    Full text link
    Depth estimation is a fundamental problem for light field photography applications. Numerous methods have been proposed in recent years, which either focus on crafting cost terms for more robust matching, or on analyzing the geometry of scene structures embedded in the epipolar-plane images. Significant improvements have been made in terms of overall depth estimation error; however, current state-of-the-art methods still show limitations in handling intricate occluding structures and complex scenes with multiple occlusions. To address these challenging issues, we propose a very effective depth estimation framework which focuses on regularizing the initial label confidence map and edge strength weights. Specifically, we first detect partially occluded boundary regions (POBR) via superpixel based regularization. Series of shrinkage/reinforcement operations are then applied on the label confidence map and edge strength weights over the POBR. We show that after weight manipulations, even a low-complexity weighted least squares model can produce much better depth estimation than state-of-the-art methods in terms of average disparity error rate, occlusion boundary precision-recall rate, and the preservation of intricate visual features

    An Improved Ant Colony Algorithm for New energy Industry Resource Allocation in Cloud Environment

    Get PDF
    The new energy industry development is affected by many factors. Among them, the resources utilization ratio is a major reason for the low productivity of enterprises. As the core problem of cloud computing, the resource allocation problem has been widely concerned by the people, and the resource allocation problem of the new energy industry as the key to energy innovation and transformation should be more paid attention to. In multi-resource cloud computing scenarios, requests made by users often involve multiple types of resources. Traditional resource allocation algorithms have a single optimization object, typically time efficiency. In order to achieve cluster load balancing, utilization of system resources and improvement of system work efficiency, this paper proposes a new cloud computing allocation algorithm based on improved ant colony algorithm. According to the limit conditions of cloud computing environment and computing resources, this paper finds the shortest response time of all resource nodes and gets a set of best available nodes. This method can meet the quality requirements of cloud computing, and the task completion time of the improved algorithm is shorter, the number of algorithm iterations is less, and the load balancing effect is better. Through MATLAB simulation experiments, the effectiveness of the proposed method is verified

    Doubly High-Dimensional Contextual Bandits: An Interpretable Model for Joint Assortment-Pricing

    Full text link
    Key challenges in running a retail business include how to select products to present to consumers (the assortment problem), and how to price products (the pricing problem) to maximize revenue or profit. Instead of considering these problems in isolation, we propose a joint approach to assortment-pricing based on contextual bandits. Our model is doubly high-dimensional, in that both context vectors and actions are allowed to take values in high-dimensional spaces. In order to circumvent the curse of dimensionality, we propose a simple yet flexible model that captures the interactions between covariates and actions via a (near) low-rank representation matrix. The resulting class of models is reasonably expressive while remaining interpretable through latent factors, and includes various structured linear bandit and pricing models as particular cases. We propose a computationally tractable procedure that combines an exploration/exploitation protocol with an efficient low-rank matrix estimator, and we prove bounds on its regret. Simulation results show that this method has lower regret than state-of-the-art methods applied to various standard bandit and pricing models. Real-world case studies on the assortment-pricing problem, from an industry-leading instant noodles company to an emerging beauty start-up, underscore the gains achievable using our method. In each case, we show at least three-fold gains in revenue or profit by our bandit method, as well as the interpretability of the latent factor models that are learned

    STK11 loss and SMARCB1 deficiency mutation in a dedifferentiated lung cancer patient present response to neo-adjuvant treatment with pembrolizumab and platinum doublet: A case report

    Get PDF
    Cancers harboring serine threonine kinase (STK11) alteration or SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily B, member 1 (SMARCB1) mutation are conventionally considered as treatment-refractory to immune checkpoint inhibitors or chemotherapy, respectively. However in the present report, we demonstrated a case of dedifferentiated non-small cell lung cancer, characterized by STK11 loss (due to promoter loss) mutation co-mutated with SMARCB1 deficiency mutation, has achieved significantly partial response to neo-adjuvant treatment with pembrolizumab and platinum doublet regimen. Our case highlighted that either STK11 loss, or SMARCB1 deficiency mutation, might not be used to select patients for PD-(L)1 blockade therapy or chemotherapy, respectively. SKT11 loss accompanied with SMARCB1 deficiency mutation may benefit from immunotherapy combined with chemotherapy
    corecore