666 research outputs found

    CEPC Technical Design Report -- Accelerator

    No full text
    International audienceThe Circular Electron Positron Collider (CEPC) is a large scientific project initiated and hosted by China, fostered through extensive collaboration with international partners. The complex comprises four accelerators: a 30 GeV Linac, a 1.1 GeV Damping Ring, a Booster capable of achieving energies up to 180 GeV, and a Collider operating at varying energy modes (Z, W, H, and ttbar). The Linac and Damping Ring are situated on the surface, while the Booster and Collider are housed in a 100 km circumference underground tunnel, strategically accommodating future expansion with provisions for a Super Proton Proton Collider (SPPC). The CEPC primarily serves as a Higgs factory. In its baseline design with synchrotron radiation (SR) power of 30 MW per beam, it can achieve a luminosity of 5e34 /cm^2/s^1, resulting in an integrated luminosity of 13 /ab for two interaction points over a decade, producing 2.6 million Higgs bosons. Increasing the SR power to 50 MW per beam expands the CEPC's capability to generate 4.3 million Higgs bosons, facilitating precise measurements of Higgs coupling at sub-percent levels, exceeding the precision expected from the HL-LHC by an order of magnitude. This Technical Design Report (TDR) follows the Preliminary Conceptual Design Report (Pre-CDR, 2015) and the Conceptual Design Report (CDR, 2018), comprehensively detailing the machine's layout and performance, physical design and analysis, technical systems design, R&D and prototyping efforts, and associated civil engineering aspects. Additionally, it includes a cost estimate and a preliminary construction timeline, establishing a framework for forthcoming engineering design phase and site selection procedures. Construction is anticipated to begin around 2027-2028, pending government approval, with an estimated duration of 8 years. The commencement of experiments could potentially initiate in the mid-2030s

    CEPC Technical Design Report -- Accelerator

    No full text
    International audienceThe Circular Electron Positron Collider (CEPC) is a large scientific project initiated and hosted by China, fostered through extensive collaboration with international partners. The complex comprises four accelerators: a 30 GeV Linac, a 1.1 GeV Damping Ring, a Booster capable of achieving energies up to 180 GeV, and a Collider operating at varying energy modes (Z, W, H, and ttbar). The Linac and Damping Ring are situated on the surface, while the Booster and Collider are housed in a 100 km circumference underground tunnel, strategically accommodating future expansion with provisions for a Super Proton Proton Collider (SPPC). The CEPC primarily serves as a Higgs factory. In its baseline design with synchrotron radiation (SR) power of 30 MW per beam, it can achieve a luminosity of 5e34 /cm^2/s^1, resulting in an integrated luminosity of 13 /ab for two interaction points over a decade, producing 2.6 million Higgs bosons. Increasing the SR power to 50 MW per beam expands the CEPC's capability to generate 4.3 million Higgs bosons, facilitating precise measurements of Higgs coupling at sub-percent levels, exceeding the precision expected from the HL-LHC by an order of magnitude. This Technical Design Report (TDR) follows the Preliminary Conceptual Design Report (Pre-CDR, 2015) and the Conceptual Design Report (CDR, 2018), comprehensively detailing the machine's layout and performance, physical design and analysis, technical systems design, R&D and prototyping efforts, and associated civil engineering aspects. Additionally, it includes a cost estimate and a preliminary construction timeline, establishing a framework for forthcoming engineering design phase and site selection procedures. Construction is anticipated to begin around 2027-2028, pending government approval, with an estimated duration of 8 years. The commencement of experiments could potentially initiate in the mid-2030s

    CEPC Technical Design Report -- Accelerator

    No full text
    International audienceThe Circular Electron Positron Collider (CEPC) is a large scientific project initiated and hosted by China, fostered through extensive collaboration with international partners. The complex comprises four accelerators: a 30 GeV Linac, a 1.1 GeV Damping Ring, a Booster capable of achieving energies up to 180 GeV, and a Collider operating at varying energy modes (Z, W, H, and ttbar). The Linac and Damping Ring are situated on the surface, while the Booster and Collider are housed in a 100 km circumference underground tunnel, strategically accommodating future expansion with provisions for a Super Proton Proton Collider (SPPC). The CEPC primarily serves as a Higgs factory. In its baseline design with synchrotron radiation (SR) power of 30 MW per beam, it can achieve a luminosity of 5e34 /cm^2/s^1, resulting in an integrated luminosity of 13 /ab for two interaction points over a decade, producing 2.6 million Higgs bosons. Increasing the SR power to 50 MW per beam expands the CEPC's capability to generate 4.3 million Higgs bosons, facilitating precise measurements of Higgs coupling at sub-percent levels, exceeding the precision expected from the HL-LHC by an order of magnitude. This Technical Design Report (TDR) follows the Preliminary Conceptual Design Report (Pre-CDR, 2015) and the Conceptual Design Report (CDR, 2018), comprehensively detailing the machine's layout and performance, physical design and analysis, technical systems design, R&D and prototyping efforts, and associated civil engineering aspects. Additionally, it includes a cost estimate and a preliminary construction timeline, establishing a framework for forthcoming engineering design phase and site selection procedures. Construction is anticipated to begin around 2027-2028, pending government approval, with an estimated duration of 8 years. The commencement of experiments could potentially initiate in the mid-2030s

    Long non-coding RNA LncCplx2 regulates glucose homeostasis and pancreatic β cell function

    No full text
    Objective: Numerous studies have highlighted the role of clock genes in diabetes disease and pancreatic β cell functions. However, whether rhythmic long non-coding RNAs involve in this process is unknown. Methods: RNA-seq and 3’ rapid amplification of cDNA ends (RACE)-PCR were used to identify the rat LncCplx2 in pancreatic β cells. The subcellular analysis with qRT-PCR and RNA-Scope were used to assess the localization of LncCplx2. The effects of LncCplx2 overexpression or knockout (KO) on the regulation of pancreatic β cell functions were assessed in vitro and in vivo. RNA-seq, immunoblotting (IB), Immunoprecipitation (IP), RNA pull-down, and chromatin immunoprecipitation (ChIP)-PCR assays were employed to explore the regulatory mechanisms through LncRNA-protein interaction. Metabolism cage was used to measure the circadian behaviors. Results: We first demonstrate that LncCplx2 is a conserved nuclear long non-coding RNA and enriched in pancreatic islets, which is driven by core clock transcription factor BMAL1. LncCplx2 is downregulated in the diabetic islets and repressed by high glucose, which regulates the insulin secretion in vitro and ex vivo. Furthermore, LncCplx2 KO mice exhibit diabetic phenotypes, such as high blood glucose and impaired glucose tolerance. Notably, LncCplx2 deficiency has significant effects on circadian behavior, including prolonged period duration, decreased locomotor activity, and reduced metabolic rates. Mechanistically, LncCplx2 recruits EZH2, a core subunit of polycomb repression complex 2 (PRC2), to the promoter of target genes, thereby silencing circadian gene expression, which leads to phase shifts and amplitude changes in insulin secretion and cell cycle genes. Conclusions: Our results propose LncCplx2 as an unanticipated transcriptional regulator in a circadian system and suggest a more integral mechanism for the coordination of circadian rhythms and glucose homeostasis

    Metal-soil interface adhesion in clay clogging during shield tunneling: Theoretical model and experimental validation

    No full text
    Clogging is a major geohazards risk in mechanized tunnelling through cohesive soils. Clay clogging results from the high adhesion between the clay and metal. Based on the water film theory and Reynolds fluid equation, the interfacial adhesion between metal and soil is simplified in this study as viscous hydrodynamic behavior between planes. Considering the influence of capillary force and the viscous force of water film at the interface between metal and soil, a theoretical calculation model of interfacial adhesion between metal and soil is established. The influence of water film thickness and separation rate on the interfacial adhesion between metal and soil is qualitatively analyzed. Then, the adhesion stress between the clay and the metal surface was tested with a pullout test and the influence of moisture content, pullout rates and types of clay minerals on the adhesion stress was analyzed. Finally, the calculation model of adhesion force was compared with the experimental results. The calculation model of soil adhesion stress established in this paper can quantitatively describe the relationship between soil adhesion force and moisture content and can also qualitatively reveal the influence mechanism of soil moisture content on adhesion stress

    Wide-frequency-range vibration positioning based on adaptive TQWT for long-distance asymmetric interferometer sensor

    No full text
    The asymmetric dual Mach–Zehnder interferometer (ADMZI) based vibration sensor effectively extends the sensing distance, however, the asymmetry seriously deteriorates the positioning accuracy. In this paper, an adaptive tunable Q-factor wavelet transform (TQWT) based long-distance asymmetric sensing system is proposed and experimentally demonstrated for the positioning of wide-frequency-range knocking vibration signals. The TQWT can extract the time-frequency features of the non-stationary signals by performing multi-scale decomposition. Firstly, the positioning method adaptively determines the decomposition levels by analyzing the power spectrum of the vibration signals, which not only effectively suppresses the effect of low-frequency noise, but also accurately extracts the main time-frequency variation characteristics of the vibration signals with various bandwidths. Then, the time delay between the time-frequency characteristics is obtained using a cross-correlation algorithm, and the vibration position is demodulated. Experimental results show that the method can accurately locate vibration signals with bandwidths of 10–80 kHz at a sensing length of 125 km. For high-frequency, strong vibration signals, the standard deviation of the positioning is around 35.1 m. For low-frequency, weak signals, the proposed method can still achieve effective positioning compared with the traditional approaches with a standard deviation of approximately 238.1 m. The proposed scheme can significantly improve the applicability of the asymmetric interferometer based vibration sensing system

    Effect of synthesizing temperature of alumina powder with rose-like structure on the microstructure and mechanical property of alumina ceramic

    No full text
    This paper reports on the successful synthesis of a novel alumina powder with a unique rose-like structure composed of alumina platelets, using the molten salt method. The synthesized powder was then utilized to prepare alumina ceramic with impressive mechanical properties. The influences of the synthesizing temperature of alumina powder on the microstructure and mechanical properties of alumina ceramic are investigated in details. The results indicate that the alumina ceramic prepared using the rose-like powder synthesized at 800 °C exhibits a high relative density of 99.5 %, flexural strength of 408.2 ± 18.7 MPa, and fracture toughness of 6.14 ± 0.63 MPa m1/2. The work presented in this paper will provide a useful guideline for the preparation of high-performance alumina ceramic materials in the future

    CEPC Technical Design Report -- Accelerator