22 research outputs found

    Quantitative Reflection Imaging for the Morphology and Dynamics of Live <i>Aplysia californica</i> Pedal Ganglion Neurons Cultured on Nanostructured Plasmonic Crystals

    No full text
    We describe a reflection imaging system that consists of a plasmonic crystal, a common laboratory microscope, and band-pass filters for use in the quantitative imaging and in situ monitoring of live cells and their substrate interactions. Surface plasmon resonance (SPR) provides a highly sensitive method to monitor changes in physicochemical properties occurring at metal–dielectric interfaces. Polyelectrolyte thin films deposited using the layer-by-layer (LBL) self-assembly method provide a reference system for calibrating the reflection contrast changes that occur when the polyelectrolyte film thickness changes and provide insight into the optical responses that originate from the multiple plasmonic features supported by this imaging system. Finite-difference time-domain (FDTD) simulations of the optical responses measured experimentally from the polyelectrolyte reference system are used to provide a calibration of the optical system for subsequent use in quantitative studies investigating live cell dynamics in cultures supported on a plasmonic crystal substrate. Live <i>Aplysia californica</i> pedal ganglion neurons cultured in artificial seawater were used as a model system through which to explore the utility of this plasmonic imaging technique. Here, the morphology of cellular peripheral structures ≲80 nm in thickness were quantitatively analyzed, and the dynamics of their trypsin-induced surface detachment were visualized. These results illustrate the capacities of this system for use in investigations of the dynamics of ultrathin cellular structures within complex bioanalytical environments

    Quantitative Reflection Imaging of Fixed Aplysia californica Pedal Ganglion Neurons on Nanostructured Plasmonic Crystals

    No full text
    Studies of the interactions between cells and surrounding environment including cell culture surfaces and their responses to distinct chemical and physical cues are essential to understanding the regulation of cell growth, migration, and differentiation. In this work, we demonstrate the capability of a label-free optical imaging techniquesurface plasmon resonance (SPR)to quantitatively investigate the relative thickness of complex biomolecular structures using a nanoimprinted plasmonic crystal and laboratory microscope. Polyelectrolyte films of different thicknesses deposited by layer-by-layer assembly served as the model system to calibrate the reflection contrast response originating from SPRs. The calibrated SPR system allows quantitative analysis of the thicknesses of the interface formed between the cell culture substrate and cellular membrane regions of fixed Aplysia californica pedal ganglion neurons. Bandpass filters were used to isolate spectral regions of reflected light with distinctive image contrast changes. Combining of the data from images acquired using different bandpass filters leads to increase image contrast and sensitivity to topological differences in interface thicknesses. This SPR-based imaging technique is restricted in measurable thickness range (∼100–200 nm) due to the limited plasmonic sensing volume, but we complement this technique with an interferometric analysis method. Described here simple reflection imaging techniques show promise as quantitative methods for analyzing surface thicknesses at nanometer scale over large areas in real-time and in physicochemical diverse environments

    Facile Synthesis of Free-Standing Silicon Membranes with Three-Dimensional Nanoarchitecture for Anodes of Lithium Ion Batteries

    No full text
    We propose a facile method for synthesizing a novel Si membrane structure with good mechanical strength and three-dimensional (3D) configuration that is capable of accommodating the large volume changes associated with lithiation in lithium ion battery applications. The membrane electrodes demonstrated a reversible charge capacity as high as 2414 mAh/g after 100 cycles at current density of 0.1 C, maintaining 82.3% of the initial charge capacity. Moreover, the membrane electrodes showed superiority in function at high current density, indicating a charge capacity >1220 mAh/g even at 8 C. The high performance of the Si membrane anode is assigned to their characteristic 3D features, which is further supported by mechanical simulation that revealed the evolution of strain distribution in the membrane during lithiation reaction. This study could provide a model system for rational and precise design of the structure and dimensions of Si membrane structures for use in high-performance lithium ion batteries