457 research outputs found

    An Attention-based Collaboration Framework for Multi-View Network Representation Learning

    Full text link
    Learning distributed node representations in networks has been attracting increasing attention recently due to its effectiveness in a variety of applications. Existing approaches usually study networks with a single type of proximity between nodes, which defines a single view of a network. However, in reality there usually exists multiple types of proximities between nodes, yielding networks with multiple views. This paper studies learning node representations for networks with multiple views, which aims to infer robust node representations across different views. We propose a multi-view representation learning approach, which promotes the collaboration of different views and lets them vote for the robust representations. During the voting process, an attention mechanism is introduced, which enables each node to focus on the most informative views. Experimental results on real-world networks show that the proposed approach outperforms existing state-of-the-art approaches for network representation learning with a single view and other competitive approaches with multiple views.Comment: CIKM 201

    Mining Entity Synonyms with Efficient Neural Set Generation

    Full text link
    Mining entity synonym sets (i.e., sets of terms referring to the same entity) is an important task for many entity-leveraging applications. Previous work either rank terms based on their similarity to a given query term, or treats the problem as a two-phase task (i.e., detecting synonymy pairs, followed by organizing these pairs into synonym sets). However, these approaches fail to model the holistic semantics of a set and suffer from the error propagation issue. Here we propose a new framework, named SynSetMine, that efficiently generates entity synonym sets from a given vocabulary, using example sets from external knowledge bases as distant supervision. SynSetMine consists of two novel modules: (1) a set-instance classifier that jointly learns how to represent a permutation invariant synonym set and whether to include a new instance (i.e., a term) into the set, and (2) a set generation algorithm that enumerates the vocabulary only once and applies the learned set-instance classifier to detect all entity synonym sets in it. Experiments on three real datasets from different domains demonstrate both effectiveness and efficiency of SynSetMine for mining entity synonym sets.Comment: AAAI 2019 camera-ready versio

    Global dynamics in a chemotaxis model describing tumor angiogenesis with/without mitosis in any dimensions

    Full text link
    In this work, we study the Neumann initial boundary value problem for a three-component chemotaxis model in any dimensional bounded and smooth domains; this model is used to describe the branching of capillary sprouts during angiogenesis. First, we find three qualitatively simple sufficient conditions for qualitative global boundedness, and then, we establish two types of global stability for bounded solutions in qualitative ways. As a consequence of our findings, the underlying system without chemotaxis and the effect of ECs mitosis can not give rise to pattern formations. Our findings quantify and extend significantly previous studies, which are set in lower dimensional convex domains and are with no qualitative information.Comment: 43 pages, under review in a journa
    corecore