34 research outputs found

    In vivo efficacy of humanized high dose meropenem and comparators against Pseudomonas aeruginosa isolates producing verona integron-encoded metallo-β-lactamase (VIM)

    Get PDF
    Introduction: We aimed to describe the in vivo efficacy of meropenem, in addition to cefepime and levofloxacin as comparators against VIM-producing Pseudomonas aeruginosa and compare the findings to our previous observations with Enterobacteriaceae. Methods: Eight clinical P. aeruginosa isolates with meropenem MICs from 4 to 512 mg/L were studied in a murine neutropenic thigh infection model. Animals were treated with doses of the antibiotics to simulate the human exposure of meropenem 2 g q8 h 30-min infusion, cefepime 2 g q8 h 30-min infusion and levofloxacin 500 mg q24 h. After 24 hours, the animals were euthanized and efficacy was calculated as the change in thigh bacterial density (log10 CFU) relative to the starting inoculum (0 h). Results: As expected, levofloxacin was ineffective against all isolates due to their resistant phenotype (8 to>64 mg/L). Cefepime also showed minimal activity against all isolates consistent with its failure to achieve pharmacodynamic target exposures due to high MICs of 32 to>512 mg/L. In the presence of low MICs (4 to 16 mg/L), the fT> MIC of meropenem was sufficiently high to result in CFU reductions. However, conflicting activity was noted for isolates with MICs = 128 mg/L that possessed the same enzymatic profile, suggesting that other mechanisms of resistance are responsible for driving CFU outcomes. No activity was noted for organisms with a meropenem MIC = 512 mg/L. Conclusion: Unlike previous observations with MBL-producing Enterobacteriaceae that showed discordance between in vitro resistance and in vivo efficacy in the murine infection model, we found that the efficacy of humanized cefepime and meropenem was generally concordant with the phenotypic profile of VIM-producing P. aeruginosa

    Efficacy of Humanized Carbapenem and Ceftazidime Regimens against Enterobacteriaceae Producing OXA-48 Carbapenemase in a Murine Infection Model

    Get PDF
    Enterobacteriaceae producing the OXA-48 carbapenemase are emerging worldwide, leaving few treatment options. Efficacy has been demonstrated in vivo with ceftazidime against a ceftazidime-susceptible OXA-48 isolate but not with imipenem despite maintaining susceptibility. The relationship between phenotype and in vivo efficacy was assessed for OXA-48 producers using humanized regimens of 2 g doripenem every 8 h (q8h; 4 h infusion), 1 g ertapenem q24h, 2 g ceftazidime q8h (2 h inf), and 500 mg levofloxacin q24h. Each regimen was evaluated over 24 h against an isogenic pair (wild-type and OXA-48 Klebsiella pneumoniae strains) and six clinical OXA-48 isolates with and without other extended-spectrum β-lactamases in immunocompetent and neutropenic murine thigh infection models. Efficacy was determined using the change in bacterial density versus 24-h growth controls in immunocompetent studies and 0-h controls in neutropenic studies. Bacterial reductions of ≥1 log CFU were observed with all agents for the wild-type strain. Consistent with low MICs, ceftazidime and levofloxacin exhibited efficacy against the isogenic OXA-48 strain, whereas doripenem did not, despite having a susceptible MIC; no activity was observed with ertapenem, consistent with a resistant MIC. Similar trends were observed for the clinical isolates evaluated. Ceftazidime, levofloxacin, and ertapenem efficacy against isogenic and clinical OXA-48-producing strains correlated well with phenotypic profiles and pharmacodynamic targets, whereas efficacy with doripenem was variable over the MIC range studied. These data suggest that carbapenems may not be a reliable treatment for treating OXA-48 producers and add to previous observations with KPC and NDM-1 suggesting that genotype may better predict activity of the carbapenems than the phenotypic profile

    <i>In Vivo</i> Efficacy of Human Simulated Regimens of Carbapenems and Comparator Agents against NDM-1-Producing Enterobacteriaceae

    Get PDF
    Doripenem and ertapenem have demonstrated efficacy against several NDM-1- producing isolates in vivo, despite having high MICs. In this study, we sought to further characterize the efficacy profiles of humanized regimens of standard (500 mg given every 8 h) and high-dose, prolonged infusion of doripenem (2 g given every 8 h, 4-h infusion) and 1 g of ertapenem given intravenously every 24 h and the comparator regimens of ceftazidime at 2 g given every 8 h (2-h infusion), levofloxacin at 500 mg every 24 h, and aztreonam at 2 g every 6 h (1-h infusion) against a wider range of isolates in a murine thigh infection model. An isogenic wild-type strain and NDM-1-producing Klebsiella pneumoniae and eight clinical NDM-1-producing members of the family Enterobacteriaceae were tested in immunocompetent- and neutropenic-mouse models. The wild-type strain was susceptible to all of the agents, while the isogenic NDM-1-producing strain was resistant to ceftazidime, doripenem, and ertapenem. Clinical NDM-1-producing strains were resistant to nearly all five of the agents (two were susceptible to levofloxacin). In immunocompetent mice, all of the agents produced ≥1-log₁₀ CFU reductions of the isogenic wild-type and NDM-1- producing strains after 24 h. Minimal efficacy of ceftazidime, aztreonam, and levofloxacin against the clinical NDM-1-producing strains was observed. However, despite in vitro resistance, ≥1-log₁₀ CFU reductions of six of eight clinical strains were achieved with high-dose, prolonged infusion of doripenem and ertapenem. Slight enhancements of doripenem activity over the standard doses were obtained with high-dose, prolonged infusion for three of the four isolates tested. Similar efficacy observations were noted in neutropenic mice. These data suggest that carbapenems are a viable treatment option for infections caused by NDM-1-producing Enterobacteriaceae

    Clinical Pharmacodynamics of Cefepime in Patients Infected with Pseudomonas aeruginosa▿

    No full text
    We evaluated cefepime exposures in patients infected with Pseudomonas aeruginosa to identify the pharmacodynamic relationship predictive of microbiological response. Patients with non-urinary tract P. aeruginosa infections and treated with cefepime were included. Free cefepime exposures were estimated by using a validated population pharmacokinetic model. P. aeruginosa MICs were determined by Etest and pharmacodynamic indices (the percentage of the dosing interval that the free drug concentration remains above the MIC of the infecting organism [fT > MIC], the ratio of the minimum concentration of free drug to the MIC [fCmin/MIC], and the ratio of the area under the concentration-time curve for free drug to the MIC [fAUC/MIC]) were calculated for each patient. Classification and regression tree analysis was used to partition the pharmacodynamic parameters for prediction of the microbiological response. Monte Carlo simulation was utilized to determine the optimal dosing regimens needed to achieve the pharmacodynamic target. Fifty-six patients with pneumonia (66.1%), skin and skin structure infections (SSSIs) (25%), and bacteremia (8.9%) were included. Twenty-four (42.9%) patients failed cefepime therapy. The MICs ranged from 0.75 to 96 μg/ml, resulting in median fT > MIC, fCmin/MIC, and fAUC/MIC exposures of 100% (range, 0.8 to 100%), 4.3 (range, 0.1 to 27.3), and 206.2 (range, 4.2 to 1,028.7), respectively. Microbiological failure was associated with an fT > MIC of ≤60% (77.8% failed cefepime therapy when fT > MIC was ≤60%, whereas 36.2% failed cefepime therapy when fT > MIC was >60%; P = 0.013). A similar fT > MIC target of ≤63.9% (P = 0.009) was identified when skin and skin structure infections were excluded. While controlling for the SSSI source (odds ratio [OR], 0.18 [95% confidence interval, 0.03 to 1.19]; P = 0.07) and combination therapy (OR, 2.15 [95% confidence interval, 0.59 to 7.88]; P = 0.25), patients with fT > MIC values of ≤60% were 8.1 times (95% confidence interval, 1.2 to 55.6 times) more likely to experience a poor microbiological response. Cefepime doses of at least 2 g every 8 h are required to achieve this target against CLSI-defined susceptible P. aeruginosa organisms in patients with normal renal function. In patients with non-urinary tract infections caused by P. aeruginosa, achievement of cefepime exposures of >60% fT > MIC will minimize the possibility of a poor microbiological response

    Pharmacodynamics of Tigecycline against Phenotypically Diverse Staphylococcus aureus Isolates in a Murine Thigh Model ▿

    No full text
    Tigecycline is a currently marketed antimicrobial agent with activity against resistant gram-positive cocci, including methicillin-resistant Staphylococcus aureus (MRSA). Despite the proven efficacy of tigecycline in the treatment of infections caused by these pathogens, questions remain as to the exposure-response relationship best associated with its efficacy. The purpose of this study was to define this relationship against seven distinct S. aureus isolates by using a neutropenic murine thigh model. Single-dose pharmacokinetics were evaluated, and free drug exposures were calculated after determination of protein binding. Doses of 1.56 to 400 mg/kg of body weight divided 1 to 8 times daily were administered against two methicillin-susceptible S. aureus isolates, two hospital-associated MRSA (HA-MRSA) isolates, and three community-associated (CA-MRSA) isolates. Tigecycline pharmacokinetics were best described by a two-compartment model, with a mean half-life of 9.9 h. Protein binding was dose dependent (range, 92.9 to 81.2%). MICs were 0.25 μg/ml for all isolates, except for HA-MRSA 56 (MIC, 0.5 μg/ml) and CA-MRSA 156 (MIC, 0.125 μg/ml). Tigecycline displayed efficacy against all isolates, producing maximum decreases in log10 numbers of CFU/ml of 1.8 to 2.3 from 0-h controls. Mean correlation coefficients for free-drug (f) concentration exposures derived from the parameters fT>MIC (the percentage of time during which the concentration of f remains above the MIC), fCmax/MIC (the ratio of the maximum concentration of f to the MIC), and fAUC/MIC (the ratio of the area under the concentration-time curve of f to the MIC) were 0.622, 0.812, and 0.958, respectively. Values for the mean effective exposure index at 80% (EI80) and 50% (EI50) for fAUC/MIC were 5.4 μg/ml (range, 2.8 to 13 μg/ml) and 2.6 μg/ml (range, 0.6 to 5.1 μg/ml), respectively. Experiments with nonneutropenic mice infected with CA-MRSA 156 resulted in maximum kill at all fAUC/MIC exposures tested (1.8 to 8.8 μg/ml). The fAUC/MIC ratio is the pharmacodynamic parameter most predictive of tigecycline efficacy. Furthermore, the presence of a functioning immune system markedly reduces the required exposure

    Characterizing In Vivo

    No full text

    Unexpected In Vivo

    No full text
    corecore