150 research outputs found

    High-Throughput Microsatellite Markers Development for Genetic Characterization of Emerging Sporothrix Species.

    No full text
    Sporotrichosis is the main subcutaneous mycosis worldwide transmitted by animal or plant vectors and often escalates to outbreaks or epidemics. The current cat-transmitted sporotrichosis driven by Sporothrix brasiliensis has become a significant public health issue in South America. Transmission dynamics remain enigmatic due to the lack of development of polymorphic markers for molecular epidemiological analysis. This study used a high-throughput mining strategy to characterize simple sequence repeat (SSR) markers from Sporothrix genomes. A total of 118,140-143,912 SSR loci were identified (82,841-98,369 unique markers), with a 3651.55-3804.65 SSR/Mb density and a majority of dinucleotides motifs (GC/CG). We developed a panel of 15 highly polymorphic SSR markers suitable for genotyping S. brasiliensis, S. schenckii, and S. globosa. PCR amplification revealed 240 alleles in 180 Sporothrix isolates with excellent polymorphic information content (PIC = 0.9101), expected heterozygosity (H = 0.9159), and discriminating power (D = 0.7127), supporting the effectiveness of SSR markers in uncovering cryptic genetic diversity. A systematic population genetic study estimated three clusters, corresponding to S. brasiliensis (population 1, n = 97), S. schenckii (population 2, n = 49), and S. globosa (population 3, n = 34), with a weak signature of mixed ancestry between populations 1 and 2 or 3 and 2. Partitioning of genetic variation via AMOVA revealed highly structured populations (ő¶PT = 0.539; Nm = 0.213; p < 0.0001), with approximately equivalent genetic variability within (46%) and between (54%) populations. Analysis of SSR diversity supports Rio de Janeiro (RJ) as the center of origin for contemporary S. brasiliensis infections. The recent emergence of cat-transmitted sporotrichosis in northeastern Brazil indicates an RJ-Northeast migration resulting in founder effects during the introduction of diseased animals into sporotrichosis-free areas. Our results demonstrated high cross-species transferability, reproducibility, and informativeness of SSR genetic markers, helping dissect deep and fine-scale genetic structures and guiding decision making to mitigate the harmful effects of the expansion of cat-transmitted sporotrichosis

    Development of a Multiplex PCR Short Tandem Repeat Typing Scheme for Candida krusei

    No full text
    Candida krusei is a human-pathogenic yeast that can cause candidemia with the lowest 90-day survival rate in comparison to other Candida species. Infections occur frequently in immunocompromised patients, and several C. krusei outbreaks in health care facilities have been described. Here, we developed a short tandem repeat (STR) typing scheme for C. krusei to allow the fast and cost-effective genotyping of an outbreak and compared the identified relatedness of 10 isolates to single nucleotide polymorphism (SNP) calling from whole-genome sequencing (WGS). From a selection of 14 novel STR markers, 6 were used to develop two multiplex PCRs. Additionally, three previously reported markers were selected for a third multiplex PCR. In total, 119 C. krusei isolates were typed using these nine markers, and 79 different genotypes were found. STR typing correlated well with WGS SNP typing, as isolates with the same STR genotype varied by 8 and 19 SNPs, while isolates that differed in all STR markers varied by at least tens of thousands of SNPs. The STR typing assay was found to be specific for C. krusei, stable in 100 subcloned generations, and comparable to SNP calling by WGS. In summary, this newly developed C. krusei STR typing scheme is a fast, reliable, easy-to-interpret, and cost-effective method compared to other typing methods. Moreover, the two newly developed multiplexes showed the same discriminatory power as all nine markers combined, indicating that multiplexes M3-1 and M9 are sufficient to type C. krusei

    Phylogenomic analysis of a 55.1 kb 19-gene dataset resolves a monophyletic Fusarium that includes the Fusarium solani Species Complex

    Get PDF
    Scientific communication is facilitated by a data-driven, scientifically sound taxonomy that considers the end-user¬Ņs needs and established successful practice. In 2013, the Fusarium community voiced near unanimous support for a concept of Fusarium that represented a clade comprising all agriculturally and clinically important Fusarium species, including the F. solani species complex (FSSC). Subsequently, this concept was challenged in 2015 by one research group who proposed dividing the genus Fusarium into seven genera, including the FSSC described as members of the genus Neocosmospora, with subsequent justification in 2018 based on claims that the 2013 concept of Fusarium is polyphyletic. Here, we test this claim and provide a phylogeny based on exonic nucleotide sequences of 19 orthologous protein-coding genes that strongly support the monophyly of Fusarium including the FSSC. We reassert the practical and scientific argument in support of a genus Fusarium that includes the FSSC and several other basal lineages, consistent with the longstanding use of this name among plant pathologists, medical mycologists, quarantine officials, regulatory agencies, students, and researchers with a stake in its taxonomy. In recognition of this monophyly, 40 species described as genus Neocosmospora were recombined in genus Fusarium, and nine others were renamed Fusarium. Here the global Fusarium community voices strong support for the inclusion of the FSSC in Fusarium, as it remains the best scientific, nomenclatural, and practical taxonomic option availabl

    The emergence of COVID-19 associated mucormycosis: a review of cases from 18 countries

    No full text
    International audienceReports of COVID-19-associated mucormycosis have been increasing in frequency since early 2021, particularly among patients with uncontrolled diabetes. Patients with diabetes and hyperglycaemia often have an inflammatory state that could be potentiated by the activation of antiviral immunity to SARS-CoV2, which might favour secondary infections. In this Review, we analysed 80 published and unpublished cases of COVID-19-associated mucormycosis. Uncontrolled diabetes, as well as systemic corticosteroid treatment, were present in most patients with COVID-19-associated mucormycosis, and rhino-orbital cerebral mucormycosis was the most frequent disease. Mortality was high at 49%, which was particularly due to patients with pulmonary or disseminated mucormycosis or cerebral involvement. Furthermore, a substantial proportion of patients who survived had life-changing morbidities (eg, loss of vision in 46% of survivors). Our Review indicates that COVID-19-associated mucormycosis is associated with high morbidity and mortality. Diagnosis of pulmonary mucormycosis is particularly challenging, and might be frequently missed in India. © 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licens

    Azole-Resistant COVID-19-Associated Pulmonary Aspergillosis in an Immunocompetent Host: A Case Report.

    No full text
    Contains fulltext : 220218.pdf (publisher's version ) (Open Access)COVID-19-associated pulmonary aspergillosis (CAPA) is a recently described disease entity affecting patients with severe pulmonary abnormalities treated in intensive care units. Delays in diagnosis contribute to a delayed start of antifungal therapy. In addition, the emergence of resistance to triazole antifungal agents puts emphasis on early surveillance for azole-resistant Aspergillus species. We present a patient with putative CAPA due to Aspergillus fumigatus with identification of a triazole-resistant isolate during therapy. We underline the challenges faced in the management of these cases, the importance of early diagnosis and need for surveillance given the emergence of triazole resistance

    Burden of serious fungal infections in the Netherlands

    No full text
    Contains fulltext : 220042.pdf (Publisher’s version ) (Open Access)BACKGROUND: Fungal diseases have an ever-increasing global disease burden, although regional estimates for specific fungal diseases are often unavailable or dispersed. OBJECTIVES: Here, we report the current annual burden of life-threatening and debilitating fungal diseases in the Netherlands. METHODS: The most recent available epidemiological data, reported incidence and prevalence of fungal diseases were used for calculations. RESULTS: Overall, we estimate that the annual burden of serious invasive fungal infections in the Netherlands totals 3 185 patients, including extrapulmonary or disseminated cryptococcosis (n = 9), pneumocystis pneumonia (n = 740), invasive aspergillosis (n = 1 283), chronic pulmonary aspergillosis (n = 257), invasive Candida infections (n = 684), mucormycosis (n = 15) and Fusarium keratitis (n = 8). Adding the prevalence of recurrent vulvo-vaginal candidiasis (n = 220 043), allergic bronchopulmonary aspergillosis (n = 13 568) and severe asthma with fungal sensitisation (n = 17 695), the total debilitating burden of fungal disease in the Netherlands is 254 491 patients yearly, approximately 1.5% of the country's population. CONCLUSION: We estimated the annual burden of serious fungal infections in the Netherlands at 1.5% of the population based on previously reported modelling of fungal rates for specific populations at risk. With emerging new risk groups and increasing reports on antifungal resistance, surveillance programmes are warranted to obtain more accurate estimates of fungal disease epidemiology and associated morbidity and mortality
    • ‚Ķ
    corecore