4,961 research outputs found

    Predicting radio emission from the newborn hot Jupiter V830 Tau and its host star

    Full text link
    Magnetised exoplanets are expected to emit at radio frequencies analogously to the radio auroral emission of Earth and Jupiter. We predict the radio emission from V830 Tau b, the youngest (2 Myr) detected exoplanet to date. We model the host star wind using 3DMHD simulations that take into account its surface magnetism. With this, we constrain the local conditions around V830 Tau b that we use to then compute its radio emission. We estimate average radio flux densities of 6 to 24mJy, depending on the assumed radius of the planet (one or two Rjupiter). These radio fluxes are present peaks that are up to twice the average values. We show here that these fluxes are weakly dependent (a factor of 1.8) on the assumed polar planetary magnetic field (10 to 100G), opposed to the maximum frequency of the emission, which ranges from 18 to 240MHz. We also estimate the thermal radio emission from the stellar wind. By comparing our results with VLA and VLBA observations of the system, we constrain the stellar mass-loss rate to be <3e-9 Msun/yr, with likely values between ~1e-12 and 1e-10 Msun/yr. The frequency-dependent extension of the radio-emitting wind is around ~ 3 to 30 Rstar for frequencies in the range of 275 to 50MHz, implying that V830 Tau b, at an orbital distance of 6.1 Rstar, could be embedded in the regions of the host star's wind that are optically thick to radio wavelengths, but not deeply so. Planetary emission can only propagate in the stellar wind plasma if the frequency of the cyclotron emission exceeds the stellar wind plasma frequency. For that, we find that for planetary radio emission to propagate through the host star wind, planetary magnetic field strengths larger than ~1.3 to 13 G are required. The V830 Tau system is a very interesting system for conducting radio observations from both the perspective of radio emission from the planet as well as from the host star's wind.Comment: A&A, in pres

    Magnetic topology and surface differential rotation on the K1 subgiant of the RS CVn system HR 1099

    Full text link
    We present here spectropolarimetric observations of the RS CVn system HR 1099 (V711 Tau) secured from 1998 February to 2002 January with the spectropolarimeter MuSiCoS at the Telescope Bernard Lyot (Observatoire du Pic du Midi, France). We apply Zeeman-Doppler Imaging and reconstruct brightness and magnetic surface topologies of the K1 primary subgiant of the system, at five different epochs. We confirm the presence of large, axisymmetric regions where the magnetic field is mainly azimuthal, providing further support to the hypothesis that dynamo processes may be distributed throughout the whole convective zone in this star. We study the short-term evolution of surface structures from a comparison of our images with observations secured at close-by epochs by Donati et al. (2003) at the Anglo-Australian Telescope. We conclude that the small-scale brightness and magnetic patterns undergo major changes within a timescale of 4 to 6 weeks, while the largest structures remain stable over several years. We report the detection of a weak surface differential rotation (both from brightness and magnetic tracers) indicating that the equator rotates faster than the pole with a difference in rotation rate between the pole and the equator about 4 times smaller than that of the Sun. This result suggests that tidal forces also impact the global dynamic equilibrium of convective zones in cool active stars.Comment: accepted by MNRA

    Radial dependence of line profile variability in seven O9--B0.5 stars

    Full text link
    Massive stars show a variety of spectral variability: presence of discrete absorption components in UV P-Cygni profiles, optical line profile variability, X-ray variability, radial velocity modulations. Our goal is to study the spectral variability of single OB stars to better understand the relation between photospheric and wind variability. For that, we rely on high spectral resolution, high signal-to-noise ratio optical spectra collected with the spectrograph NARVAL on the Telescope Bernard Lyot at Pic du Midi. We investigate the variability of twelve spectral lines by means of the Temporal Variance Spectrum (TVS). The selected lines probe the radial structure of the atmosphere, from the photosphere to the outer wind. We also perform a spectroscopic analysis with atmosphere models to derive the stellar and wind properties, and to constrain the formation region of the selected lines. We show that variability is observed in the wind lines of all bright giants and supergiants, on a daily timescale. Lines formed in the photosphere are sometimes variable, sometimes not. The dwarf stars do not show any sign of variability. If variability is observed on a daily timescale, it can also (but not always) be observed on hourly timescales, albeit with lower amplitude. There is a very clear correlation between amplitude of the variability and fraction of the line formed in the wind. Strong anti-correlations between the different part of the temporal variance spectrum are observed. Our results indicate that variability is stronger in lines formed in the wind. A link between photospheric and wind variability is not obvious from our study, since wind variability is observed whatever the level of photospheric variability. Different photospheric lines also show different degrees of variability.Comment: 13 pages, 9 figures + appendix. A&A accepted. Figures degraded for arxiv submissio

    Temporal fluctuations in the differential rotation of cool active stars

    Full text link
    This paper reports positive detections of surface differential rotation on two rapidly rotating cool stars at several epochs, by using stellar surface features (both cool spots and magnetic regions) as tracers of the large scale latitudinal shear that distorts the convective envelope in this type of stars. We also report definite evidence that this differential rotation is different when estimated from cool spots or magnetic regions, and that it undergoes temporal fluctuations of potentially large amplitude on a time scale of a few years. We consider these results as further evidence that the dynamo processes operating in these stars are distributed throughout the convective zone rather than being confined at its base as in the Sun. By comparing our observations with two very simple models of the differential rotation within the convective zone, we obtain evidence that the internal rotation velocity field of the stars we investigated is not like that of the Sun, and may resemble that we expect for rapid rotators. We speculate that the changes in differential rotation result from the dynamo processes (and from the underlying magnetic cycle) that periodically converts magnetic energy into kinetic energy and vice versa. We emphasise that the technique outlined in this paper corresponds to the first practical method for investigating the large scale rotation velocity field within convective zones of cool active stars, and offers several advantages over asteroseismology for this particular purpose and this specific stellar class.Comment: 14 pages, 4 figure

    Magnetic activity on AB Doradus: Temporal evolution of starspots and differential rotation from 1988 to 1994

    Get PDF
    Surface brightness maps for the young K0 dwarf AB Doradus are reconstructed from archival data sets for epochs spanning 1988 to 1994. By using the signal-to-noise enhancement technique of Least-Squares Deconvolution, our results show a greatly increased resolution of spot features than obtained in previously published surface brightness reconstructions. These images show that for the exception of epoch 1988.96, the starspot distributions are dominated by a long-lived polar cap, and short-lived low to high latitude features. The fragmented polar cap at epoch 1988.96 could indicate a change in the nature of the dynamo in the star. For the first time we measure differential rotation for epochs with sufficient phase coverage (1992.05, 1993.89, 1994.87). These measurements show variations on a timescale of at least one year, with the strongest surface differential rotation ever measured for AB Dor occurring in 1994.86. In conjunction with previous investigations, our results represent the first long-term analysis of the temporal evolution of differential rotation on active stars.Comment: accepted by MNRAS 18 pages 18 figure

    The evolution of surface magnetic fields in young solar-type stars

    Full text link
    The surface rotation rates of young solar-type stars decrease rapidly with age from the end of the pre-main sequence though the early main sequence. This suggests that there is also an important change in the dynamos operating in these stars, which should be observable in their surface magnetic fields. Here we present early results in a study aimed at observing the evolution of these magnetic fields through this critical time period. We are observing stars in open clusters and stellar associations to provide precise ages, and using Zeeman Doppler Imaging to characterize the complex magnetic fields. Presented here are results for six stars, three in the in the beta Pic association (~10 Myr old) and three in the AB Dor association (~100 Myr old).Comment: To appear in the proceedings of IAU symposium 302: Magnetic fields throughout stellar evolution. 2 pages, 3 figure

    Magnetic cycles of the planet-hosting star tauBootis

    Full text link
    We have obtained new spectropolarimetric observations of the planet-hosting star tauBootis, using the ESPaDOnS and NARVAL spectropolarimeters at the Canada-France-Hawaii Telescope and Telescope Bernard-Lyot. With this data set, we are able to confirm the presence of a magnetic field at the surface of tauBoo and map its large-scale structure over the whole star. The overall polarity of the magnetic field has reversed with respect to our previous observation (obtained a year before), strongly suggesting that tauBoo is undergoing magnetic cycles similar to those of the Sun. This is the first time that a global magnetic polarity switch is observed in a star other than the Sun; we speculate that the magnetic cycle period of tauBoo is much shorter than that of the Sun. Our new data also allow us to confirm the presence of differential rotation from the latitudinal shearing that the magnetic structure is undergoing. The differential rotation surface shear that tauBoo experiences is found to be 6 to 10 times larger than that of the Sun. We propose that the short magnetic cycle period is due to the strong level of differential rotation. With a rotation period of 3.0 and 3.9 d at the equator and pole respectively, tauBoo appears as the first planet-hosting star whose rotation (at intermediate latitudes) is synchronised with the orbital motion of its giant planet (period 3.3 d). Assuming that this synchronisation is not coincidental, it suggests that the tidal effects induced by the giant planet can be strong enough to force the thin convective enveloppe (though not the whole star) into corotation and thus to play a role in the activity cycle of tauBoo.Comment: MNRAS, in pres

    Three-dimensional Simulations of Accretion to Stars with Complex Magnetic Fields

    Full text link
    Disk accretion to rotating stars with complex magnetic fields is investigated using full three-dimensional magnetohydrodynamic (MHD) simulations. The studied magnetic configurations include superpositions of misaligned dipole and quadrupole fields and off-centre dipoles. The simulations show that when the quadrupole component is comparable to the dipole component, the magnetic field has a complex structure with three major magnetic poles on the surface of the star and three sets of loops of field lines connecting them. A significant amount of matter flows to the quadrupole "belt", forming a ring-like hot spot on the star. If the maximum strength of the magnetic field on the star is fixed, then we observe that the mass accretion rate, the torque on the star, and the area covered by hot spots are several times smaller in the quadrupole-dominant cases than in the pure dipole cases. The influence of the quadrupole component on the shape of the hot spots becomes noticeable when the ratio of the quadrupole and dipole field strengths Bq/Bd≳0.5B_q/B_d\gtrsim0.5, and becomes dominant when Bq/Bd≳1B_q/B_d\gtrsim1. In the case of an off-centre dipole field, most of the matter flows through a one-armed accretion stream, forming a large hot spot on the surface, with a second much smaller secondary spot. The light curves may have simple, sinusoidal shapes, thus mimicking stars with pure dipole fields. Or, they may be complex and unusual. In some cases the light curves may be indicators of a complex field, in particular if the inclination angle is known independently. We also note that in the case of complex fields, magnetospheric gaps are often not empty, and this may be important for the survival of close-in exosolar planets.Comment: 13 pages, 21 figures, accepted for publication in MNRA
    • …