515 research outputs found

    Fusarium and allied fusarioid taxa (FUSA). 1

    Get PDF
    Seven Fusarium species complexes are treated, namely F. aywerte species complex (FASC) (two species), F. buharicum species complex (FBSC) (five species), F. burgessii species complex (FBURSC) (three species), F. camptoceras species complex (FCAMSC) (three species), F. chlamydosporum species complex (FCSC) (eight species), F. citricola species complex (FCCSC) (five species) and the F. concolor species complex (FCOSC) (four species). New species include Fusicolla elongata from soil (Zimbabwe), and Neocosmospora geoasparagicola from soil associated with Asparagus officinalis (Netherlands). New combinations include Neocosmospora akasia, N. awan, N. drepaniformis, N. duplosperma, N. geoasparagicola, N. mekan, N. papillata, N. variasi and N. warna. Newly validated taxa include Longinectria gen. nov., L. lagenoides, L. verticilliforme, Fusicolla gigas and Fusicolla guangxiensis. Furthermore, Fusarium rosicola is reduced to synonymy under N. brevis. Finally, the genome assemblies of Fusarium secorum (CBS 175.32), Microcera coccophila (CBS 310.34), Rectifusarium robinianum (CBS 430.91), Rugonectria rugulosa (CBS 126565), and Thelonectria blattea (CBS 952.68) are also announced her

    Fusarium and allied fusarioid taxa (FUSA). 1

    No full text
    Seven Fusarium species complexes are treated, namely F. aywerte species complex (FASC) (two species), F. buharicum species complex (FBSC) (five species), F. burgessii species complex (FBURSC) (three species), F. camptoceras species complex (FCAMSC) (three species), F. chlamydosporum species complex (FCSC) (eight species), F. citricola species complex (FCCSC) (five species) and the F. concolor species complex (FCOSC) (four species). New species include Fusicolla elongata from soil (Zimbabwe), and Neocosmospora geoasparagicola from soil associated with Asparagus officinalis (Netherlands). New combinations include Neocosmospora akasia, N. awan, N. drepaniformis, N. duplosperma, N. geoasparagicola, N. mekan, N. papillata, N. variasi and N. warna. Newly validated taxa include Longinectria gen. nov., L. lagenoides, L. verticilliforme, Fusicolla gigas and Fusicolla guangxiensis. Furthermore, Fusarium rosicola is reduced to synonymy under N. brevis. Finally, the genome assemblies of Fusicolla betae (CBS 175.32), Microcera coccophila (CBS 310.34), Rectifusarium robinianum (CBS 430.91), Rugonectria rugulosa (CBS 126565), and Thelonectria blattea (CBS 952.68) are also announced here

    Fusarium: more than a node or a foot-shaped basal cell

    Get PDF
    Recent publications have argued that there are potentially serious consequences for researchers in recognising distinct genera in the terminal fusarioid clade of the family Nectriaceae. Thus, an alternate hypothesis, namely a very broad concept of the genus Fusarium was proposed. In doing so, however, a significant body of data that supports distinct genera in Nectriaceae based on morphology, biology, and phylogeny is disregarded. A DNA phylogeny based on 19 orthologous protein-coding genes was presented to support a very broad concept of Fusarium at the F1 node in Nectriaceae. Here, we demonstrate that re-analyses of this dataset show that all 19 genes support the F3 node that represents Fusarium sensu stricto as defined by F. sambucinum (sexual morph synonym Gibberella pulicaris). The backbone of the phylogeny is resolved by the concatenated alignment, but only six of the 19 genes fully support the F1 node, representing the broad circumscription of Fusarium. Furthermore, a re-analysis of the concatenated dataset revealed alternate topologies in different phylogenetic algorithms, highlighting the deep divergence and unresolved placement of various Nectriaceae lineages proposed as members of Fusarium. Species of Fusarium s. str. are characterised by Gibberella sexual morphs, asexual morphs with thin- or thick-walled macroconidia that have variously shaped apical and basal cells, and trichothecene mycotoxin production, which separates them from other fusarioid genera. Here we show that the Wollenweber concept of Fusarium presently accounts for 20 segregate genera with clear-cut synapomorphic traits, and that fusarioid macroconidia represent a character that has been gained or lost multiple times throughout Nectriaceae. Thus, the very broad circumscription of Fusarium is blurry and without apparent synapomorphies, and does not include all genera with fusarium-like macroconidia, which are spread throughout Nectriaceae (e.g., Cosmosporella, Macroconia, Microcera). In this study four new genera are introduced, along with 18 new species and 16 new combinations. These names convey information about relationships, morphology, and ecological preference that would otherwise be lost in a broader definition of Fusarium. To assist users to correctly identify fusarioid genera and species, we introduce a new online identification database, Fusarioid-ID, accessible at www.fusarium.org. The database comprises partial sequences from multiple genes commonly used to identify fusarioid taxa (act1, CaM, his3, rpb1, rpb2, tef1, tub2, ITS, and LSU). In this paper, we also present a nomenclator of names that have been introduced in Fusarium up to January 2021 as well as their current status, types, and diagnostic DNA barcode data. In this study, researchers from 46 countries, representing taxonomists, plant pathologists, medical mycologists, quarantine officials, regulatory agencies, and students, strongly support the application and use of a more precisely delimited Fusarium (= Gibberella) concept to accommodate taxa from the robust monophyletic node F3 on the basis of a well-defined and unique combination of morphological and biochemical features. This F3 node includes, among others, species of the F. fujikuroi, F. incarnatum-equiseti, F. oxysporum, and F. sambucinum species complexes, but not species of Bisifusarium [F. dimerum species complex (SC)], Cyanonectria (F. buxicola SC), Geejayessia (F. staphyleae SC), Neocosmospora (F. solani SC) or Rectifusarium (F. ventricosum SC). The present study represents the first step to generating a new online monograph of Fusarium and allied fusarioid genera (www.fusarium.org)

    Phylogenomic analysis of a 55.1 kb 19-gene dataset resolves a monophyletic Fusarium that includes the Fusarium solani Species Complex

    Get PDF
    Scientific communication is facilitated by a data-driven, scientifically sound taxonomy that considers the end-user¬Ņs needs and established successful practice. In 2013, the Fusarium community voiced near unanimous support for a concept of Fusarium that represented a clade comprising all agriculturally and clinically important Fusarium species, including the F. solani species complex (FSSC). Subsequently, this concept was challenged in 2015 by one research group who proposed dividing the genus Fusarium into seven genera, including the FSSC described as members of the genus Neocosmospora, with subsequent justification in 2018 based on claims that the 2013 concept of Fusarium is polyphyletic. Here, we test this claim and provide a phylogeny based on exonic nucleotide sequences of 19 orthologous protein-coding genes that strongly support the monophyly of Fusarium including the FSSC. We reassert the practical and scientific argument in support of a genus Fusarium that includes the FSSC and several other basal lineages, consistent with the longstanding use of this name among plant pathologists, medical mycologists, quarantine officials, regulatory agencies, students, and researchers with a stake in its taxonomy. In recognition of this monophyly, 40 species described as genus Neocosmospora were recombined in genus Fusarium, and nine others were renamed Fusarium. Here the global Fusarium community voices strong support for the inclusion of the FSSC in Fusarium, as it remains the best scientific, nomenclatural, and practical taxonomic option availabl

    Fusarium and allied fusarioid taxa (FUSA). 1

    Get PDF
    Seven Fusarium species complexes are treated, namely F. aywerte species complex (FASC) (two species), F. buharicum species complex (FBSC) (five species), F. burgessii species complex (FBURSC) (three species), F. camptoceras species complex (FCAMSC) (three species), F. chlamydosporum species complex (FCSC) (eight species), F. citricola species complex (FCCSC) (five species) and the F. concolor species complex (FCOSC) (four species). New species include Fusicolla elongata from soil (Zimbabwe), and Neocosmospora geoasparagicola from soil associated with Asparagus officinalis (Netherlands). New combinations include Neocosmospora akasia, N. awan, N. drepaniformis, N. duplosperma, N. geoasparagicola, N. mekan, N. papillata, N. variasi and N. warna. Newly validated taxa include Longinectria gen. nov., L. lagenoides, L. verticilliforme, Fusicolla gigas and Fusicolla guangxiensis. Furthermore, Fusarium rosicola is reduced to synonymy under N. brevis. Finally, the genome assemblies of Fusarium secorum (CBS 175.32), Microcera coccophila (CBS 310.34), Rectifusarium robinianum (CBS 430.91), Rugonectria rugulosa (CBS 126565), and Thelonectria blattea (CBS 952.68) are also announced here

    Multicenter Evaluation of MIC Distributions for Epidemiologic Cutoff Value Definition To Detect Amphotericin B, Posaconazole, and Itraconazole Resistance among the Most Clinically Relevant Species of <i>Mucorales</i>

    Get PDF
    Clinical breakpoints (CBPs) have not been established for the Mucorales and any antifungal agent. In lieu of CBPs, epidemiologic cutoff values (ECVs) are proposed for amphotericin B, posaconazole, and itraconazole and four Mucorales species. Wild-type (WT) MIC distributions (organisms in a species-drug combination with no detectable acquired resistance mechanisms) were defined with available pooled CLSI MICs from 14 laboratories (Argentina, Australia, Canada, Europe, India, Mexico, and the United States) as follows: 10 Apophysomyces variabilis, 32 Cunninghamella bertholletiae, 136 Lichtheimia corymbifera, 10 Mucor indicus, 123 M. circinelloides, 19 M. ramosissimus, 349 Rhizopus arrhizus, 146 R. microsporus, 33 Rhizomucor pusillus, and 36 Syncephalastrum racemosum isolates. CLSI broth microdilution MICs were aggregated for the analyses. ECVs comprising ‚Č•95% and ‚Č•97.5% of the modeled populations were as follows: amphotericin B ECVs for L. corymbifera were 1 and 2 őľg/ml, those for M. circinelloides were 1 and 2 őľg/ml, those for R. arrhizus were 2 and 4 őľg/ml, and those for R. microsporus were 2 and 2 őľg/ml, respectively; posaconazole ECVs for L. corymbifera were 1 and 2, those for M. circinelloides were 4 and 4, those for R. arrhizus were 1 and 2, and those for R. microsporus were 1 and 2, respectively; both itraconazole ECVs for R. arrhizus were 2 őľg/ml. ECVs may aid in detecting emerging resistance or isolates with reduced susceptibility (non-WT MICs) to the agents evaluated.Facultad de Ciencias Veterinaria

    The X-ray Emission of ő≥ Cassiopeiae During the 2020-2021 Disc Eruption

    No full text
    International audienceContext. ő≥ Cas is known for its unusually hard and intense X-ray emission. This emission could trace accretion by a compact companion, wind interaction with a hot sub-dwarf companion, or magnetic interaction between the star and its Be decretion disc. Aims: These various scenarios should lead to diverse dependences of the hard X-ray emission on disc density. To test these scenarios, we collected X-ray observations of ő≥ Cas during an episode of enhanced disc activity that took place around January 2021. Methods: We investigate the variations in the disc properties using time series of dedicated optical spectroscopy and existing broadband photometry. Equivalent widths and peak velocity separations are measured for a number of prominent emission lines. Epoch-dependent Doppler maps of the HőĪ, Hő≤, and He I őĽ 5876 emission lines are built to characterise the emission regions in velocity space. We analyse four XMM-Newton observations obtained between January 2021 and January 2022 at key phases of the episode of enhanced disc activity. Archival XMM-Newton, Chandra, MAXI, and RXTE-ASM data are also used to study the long-term correlation between optical and X-ray emission. Results: Optical spectroscopy unveils a clear increase in the radial extent of the emission regions during the episode of enhanced disc activity, whilst no increase in the V-band flux is recorded. Our Doppler maps do not reveal any stable feature in the disc resulting from the putative action of the companion on the outer parts of the Be disc. Whilst the hard X-ray emission is found to display the usual level and type of variability, no specific increase in the hard emission is observed in relation to the enhanced disc activity. However, at two occasions, including at the maximum disc activity, the soft X-ray emission of ő≥ Cas is strongly attenuated, suggesting more efficient obscuration by material from a large flaring Be disc. In addition, there is a strong correlation between the long-term variations in the X-ray flux and the optical variations in the V-band photometry. Conclusions: The observed behaviour of ő≥ Cas suggests no direct link between the properties of the outer regions of the Be disc and the hard X-ray emission, but it favours a link between the level of X-ray emission and the properties of the inner part of the Be disc. These results thus disfavour an accretion or colliding wind scenario

    The orbit and stellar masses of the archetype colliding-wind binary WR 140

    No full text
    International audienceWe present updated orbital elements for the Wolf-Rayet (WR) binary WR 140 (HD 193793; WC7pd + O5.5fc). The new orbital elements were derived using previously published measurements along with 160 new radial velocity measurements across the 2016 periastron passage of WR 140. Additionally, four new measurements of the orbital astrometry were collected with the CHARA Array. With these measurements, we derive stellar masses of MWR=10.31¬Ī0.45‚ÄČM‚äôM_{\rm WR} = 10.31\pm 0.45 \, \mathrm{M}_\odot and MO=29.27¬Ī1.14‚ÄČM‚äôM_{\rm O} = 29.27\pm 1.14 \, \mathrm{M}_{\odot }. We also include a discussion of the evolutionary history of this system from the Binary Population and Spectral Synthesis model grid to show that this WR star likely formed primarily through mass-loss in the stellar winds, with only a moderate amount of mass lost or transferred through binary interactions

    XI CIDU. La transformación digital de la universidad Congreso Iberoamericano de Docencia Universitaria

    Get PDF
    Nesta comunica√ß√£o apresenta-se uma experi√™ncia de gamifica√ß√£o realizada numa turma online, numa Universidade Virtual. Foram utilizados como elementos de jogo pontos, badges, leadboard, avatares e desafios. Do ponto de vista do desenho da unidade curricular, foi proposto um desafio global, sob a forma de roleplaying, que percorreu todo o semestre. Para este desafio global contribu√≠ram tr√™s outros desafios, nos quais os estudantes deveriam dinamizar discuss√Ķes, sendo atribu√≠dos pontos e badges em fun√ß√£o da sua presta√ß√£o. No que se refere √† metodologia, tratou-se de uma investiga√ß√£o explorat√≥ria, com car√°cter qualitativo. Como t√©cnicas de recolha de dados, privilegiou-se a observa√ß√£o, realizada durante toda a unidade curricular, complementada por um question√°rio aos estudantes no final do semestre. Constatou-se que a estrat√©gia adotada incentivou a participa√ß√£o ativa dos estudantes, tendo estes gostado da experi√™ncia. Verificaram-se, contudo, algumas limita√ß√Ķes, pelo facto de os estudantes desta amostra serem adultos trabalhadores a frequentar uma licenciatura online, com outros compromissos profissionais e familiares. Com efeito, verificou-se que v√°rios deles mencionaram ter dificuldade na gest√£o do tempo, limitando a possibilidade de ades√£o a um percurso exigente em termos de participa√ß√£o ativa.In this paper, we present a gamification experiment that took place in an online class at a virtual university. The game elements were points, badges, leaderboard, avatars and challenges. Taking into account the curricular unit design, a global challenge was proposed, in the form of roleplaying, and took place along the whole semester. Three other challenges contributed to this global challenge: the students had to dynamize debates, and received points and badges, according to their performance. In terms of methodology, it consisted in an exploratory research of a qualitative character. Observation, complemented by a questionnaire made available to the students at the end of the semester, were the chosen techniques for data collection. It was observed that the adopted strategy motivated the students‚Äô active participation, who really enjoyed the experience. However, some limitations were also observed, once these students, attending an online First Cycle Degree, are adults who have professional and family responsibilities and commitments. Actually, several of them mentioned that the difficulty in organizing their time did limit the possibility of participating in the challenge, which was indeed demanding in terms of active participation.info:eu-repo/semantics/publishedVersio
    • ‚Ķ
    corecore