120 research outputs found

    Limited resolution and multiresolution methods in complex network community detection

    Full text link
    Detecting community structure in real-world networks is a challenging problem. Recently, it has been shown that the resolution of methods based on optimizing a modularity measure or a corresponding energy is limited; communities with sizes below some threshold remain unresolved. One possibility to go around this problem is to vary the threshold by using a tuning parameter, and investigate the community structure at variable resolutions. Here, we analyze the resolution limit and multiresolution behavior for two different methods: a q-state Potts method proposed by Reichard and Bornholdt, and a recent multiresolution method by Arenas, Fernandez, and Gomez. These methods are studied analytically, and applied to three test networks using simulated annealing.Comment: 6 pages, 2 figures.Minor changes from previous version, shortened a couple of page

    Multi-locus interactions and the build-up of reproductive isolation

    Get PDF
    All genes interact with other genes, and their additive effects and epistatic interactions affect an organism's phenotype and fitness. Recent theoretical and empirical work has advanced our understanding of the role of multi-locus interactions in speciation. However, relating different models to one another and to empirical observations is challenging. This review focuses on multi-locus interactions that lead to reproductive isolation (RI) through reduced hybrid fitness. We first review theoretical approaches and show how recent work incorporating a mechanistic understanding of multi-locus interactions recapitulates earlier models, but also makes novel predictions concerning the build-up of RI. These include high variance in the build-up rate of RI among taxa, the emergence of strong incompatibilities producing localized barriers to introgression, and an effect of population size on the build-up of RI. We then review recent experimental approaches to detect multi-locus interactions underlying RI using genomic data. We argue that future studies would benefit from overlapping methods like ancestry disequilibrium scans, genome scans of differentiation and analyses of hybrid gene expression. Finally, we highlight a need for further overlap between theoretical and empirical work, and approaches that predict what kind of patterns multi-locus interactions resulting in incompatibilities will leave in genome-wide polymorphism data. This article is part of the theme issue 'Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers'.Peer reviewe

    Microseminoprotein-Beta Expression in Different Stages of Prostate Cancer

    Get PDF
    Microseminoprotein-beta (MSMB, MSMB) is an abundant secretory protein contributed by the prostate, and is implicated as a prostate cancer (PC) biomarker based on observations of its lower expression in cancerous cells compared with benign prostate epithelium. However, as the current literature on MSMB is inconsistent, we assessed the expression of MSMB at the protein and mRNA levels in a comprehensive set of different clinical stages of PC. Immunohistochemistry using monoclonal and polyclonal antibodies against MSMB was used to study protein expression in tissue specimens representing prostatectomies (n = 261) and in diagnostic needle biopsies from patients treated with androgen deprivation therapy (ADT) (n = 100), and in locally recurrent castration-resistant PC (CRPC) (n = 105) and CRPC metastases (n = 113). The transcript levels of MSMB, nuclear receptor co-activator 4 (NCOA4) and MSMB-NCOA4 fusion were examined by qRT-PCR in prostatectomy samples and by RNA-sequencing in benign prostatic hyperplasia, PC, and CRPC samples. We also measured serum MSMB levels and genotyped the single nucleotide polymorphism rs10993994 using DNA from the blood of 369 PC patients and 903 controls. MSMB expression in PC (29% of prostatectomies and 21% of needle biopsies) was more frequent than in CRPC (9% of locally recurrent CRPCs and 9% of CRPC metastases) (p<0.0001). Detection of MSMB protein was inversely correlated with the Gleason score in prostatectomy specimens (p = 0.024). The read-through MSMB-NCOA4 transcript was detected at very low levels in PC. MSMB levels in serum were similar in cases of PC and controls but were significantly associated with PC risk when adjusted for age at diagnosis and levels of free or total PSA (p<0.001). Serum levels of MSMB in both PC patients and controls were significantly associated with the rs10993994 genotype (p<0.0001). In conclusion, decreased expression of MSMB parallels the clinical progression of PC and adjusted serum MSMB levels are associated with PC risk

    Persistence of social signatures in human communication

    Get PDF
    The social network maintained by a focal individual, or ego, is intrinsically dynamic and typically exhibits some turnover in membership over time as personal circumstances change. However, the consequences of such changes on the distribution of an ego’s network ties are not well understood. Here we use a unique 18-mo dataset that combines mobile phone calls and survey data to track changes in the ego networks and communication patterns of students making the transition from school to university or work. Our analysis reveals that individuals display a distinctive and robust social signature, captured by how interactions are distributed across different alters. Notably, for a given ego, these social signatures tend to persist over time, despite considerable turnover in the identity of alters in the ego network. Thus, as new network members are added, some old network members either are replaced or receive fewer calls, preserving the overall distribution of calls across network members. This is likely to reflect the consequences of finite resources such as the time available for communication, the cognitive and emotional effort required to sustain close relationships, and the ability to make emotional investments

    The International-Trade Network: Gravity Equations and Topological Properties

    Get PDF
    This paper begins to explore the determinants of the topological properties of the international - trade network (ITN). We fit bilateral-trade flows using a standard gravity equation to build a "residual" ITN where trade-link weights are depurated from geographical distance, size, border effects, trade agreements, and so on. We then compare the topological properties of the original and residual ITNs. We find that the residual ITN displays, unlike the original one, marked signatures of a complex system, and is characterized by a very different topological architecture. Whereas the original ITN is geographically clustered and organized around a few large-sized hubs, the residual ITN displays many small-sized but trade-oriented countries that, independently of their geographical position, either play the role of local hubs or attract large and rich countries in relatively complex trade-interaction patterns

    Network 'small-world-ness': a quantitative method for determining canonical network equivalence

    Get PDF
    Background: Many technological, biological, social, and information networks fall into the broad class of 'small-world' networks: they have tightly interconnected clusters of nodes, and a shortest mean path length that is similar to a matched random graph (same number of nodes and edges). This semi-quantitative definition leads to a categorical distinction ('small/not-small') rather than a quantitative, continuous grading of networks, and can lead to uncertainty about a network's small-world status. Moreover, systems described by small-world networks are often studied using an equivalent canonical network model-the Watts-Strogatz (WS) model. However, the process of establishing an equivalent WS model is imprecise and there is a pressing need to discover ways in which this equivalence may be quantified. Methodology/Principal Findings: We defined a precise measure of 'small-world-ness' S based on the trade off between high local clustering and short path length. A network is now deemed a 'small-world' if S. 1-an assertion which may be tested statistically. We then examined the behavior of S on a large data-set of real-world systems. We found that all these systems were linked by a linear relationship between their S values and the network size n. Moreover, we show a method for assigning a unique Watts-Strogatz (WS) model to any real-world network, and show analytically that the WS models associated with our sample of networks also show linearity between S and n. Linearity between S and n is not, however, inevitable, and neither is S maximal for an arbitrary network of given size. Linearity may, however, be explained by a common limiting growth process. Conclusions/Significance: We have shown how the notion of a small-world network may be quantified. Several key properties of the metric are described and the use of WS canonical models is placed on a more secure footing

    Quantitative analysis of ERG expression and its splice isoforms in formalin-fixed, paraffin-embedded prostate cancer samples: Association with seminal vesicle invasion and biochemical recurrence

    Get PDF
    © American Society for Clinical Pathology. Objectives: The proto-oncogene ETS-related gene (ERG) is consistently overexpressed in prostate cancer. Alternatively spliced isoforms of ERG have variable biological activities; inclusion of exon 11 (72 base pairs [bp]) is associated with aggressiveness and progression of disease. Exon 10 (81 bp) has also been shown to be alternatively spliced. Within this study, we assess whether ERG protein, messenger RNA (mRNA), and ERG splice isoform mRNA expression is altered as prostate cancer progresses. Methods: Detection of the TMPRSS2-ERG fusion was done using direct methods (reverse transcription polymerase chain reaction [PCR] and fluorescence in situ hybridization) and indirect methods for ERG mRNA and protein expression using quantitative PCR and immunohistochemistry, respectively. A linear equation method was used to quantitatively determine relative proportions of ERG variants (ERG72/Δ72, ERG81/Δ81) for each sample. Results: ERG mRNA and protein expression is increased in patients with advanced prostate cancer, with higher levels of ERG expression significantly associated with seminal vesicle invasion (stage pT3b) and biochemical recurrence. Genes involved in cell migration and invasiveness (matrix metalloproteinase 7, osteopontin, and septin 9) are increased in prostate cancers that overexpress ERG. In addition, there is a clear indication of increased retention of exons 10 and 11 in prostate cancer. Conclusions: Analysis of ERG and its variants may be valuable in determining prognosis and development of prostate cancer