31,538 research outputs found

    Proposals which speed-up function-space MCMC

    Full text link
    Inverse problems lend themselves naturally to a Bayesian formulation, in which the quantity of interest is a posterior distribution of state and/or parameters given some uncertain observations. For the common case in which the forward operator is smoothing, then the inverse problem is ill-posed. Well-posedness is imposed via regularisation in the form of a prior, which is often Gaussian. Under quite general conditions, it can be shown that the posterior is absolutely continuous with respect to the prior and it may be well-defined on function space in terms of its density with respect to the prior. In this case, by constructing a proposal for which the prior is invariant, one can define Metropolis-Hastings schemes for MCMC which are well-defined on function space, and hence do not degenerate as the dimension of the underlying quantity of interest increases to infinity, e.g. under mesh refinement when approximating PDE in finite dimensions. However, in practice, despite the attractive theoretical properties of the currently available schemes, they may still suffer from long correlation times, particularly if the data is very informative about some of the unknown parameters. In fact, in this case it may be the directions of the posterior which coincide with the (already known) prior which decorrelate the slowest. The information incorporated into the posterior through the data is often contained within some finite-dimensional subspace, in an appropriate basis, perhaps even one defined by eigenfunctions of the prior. We aim to exploit this fact and improve the mixing time of function-space MCMC by careful rescaling of the proposal. To this end, we introduce two new basic methods of increasing complexity, involving (i) characteristic function truncation of high frequencies and (ii) hessian information to interpolate between low and high frequencies

    Solution of systems of nonlinear equations Final report

    Get PDF
    Algorithm and computer program of diagonal discrimination method for computing nonlinear and transcendental function

    Parenting, partnerships and a pandemic. In conversation with Abi Locke

    Get PDF
    A conversation with Abi Locke about her keynote at Psychology of Women and Equalities 2022 Conference

    The experience of being a working mum with young children

    Get PDF
    Presentation of the findings from Master's project

    The experience of being a working mum with young children. MSc project

    Get PDF
    Presentation of the Master's project, 26th May 2022

    Deterministic Mean-field Ensemble Kalman Filtering

    Full text link
    The proof of convergence of the standard ensemble Kalman filter (EnKF) from Legland etal. (2011) is extended to non-Gaussian state space models. A density-based deterministic approximation of the mean-field limit EnKF (DMFEnKF) is proposed, consisting of a PDE solver and a quadrature rule. Given a certain minimal order of convergence κ\kappa between the two, this extends to the deterministic filter approximation, which is therefore asymptotically superior to standard EnKF when the dimension d<2κd<2\kappa. The fidelity of approximation of the true distribution is also established using an extension of total variation metric to random measures. This is limited by a Gaussian bias term arising from non-linearity/non-Gaussianity of the model, which exists for both DMFEnKF and standard EnKF. Numerical results support and extend the theory