265 research outputs found

    Correlative Light- and Electron Microscopy in Peroxisome Research

    No full text
    Correlative light and electron microscopy (CLEM) combines the advantages of protein localization by fluorescence microscopy with the high resolution of electron microscopy. Here, we describe a protocol that we developed for yeast peroxisome research. First, cells are fixed, using conditions that preserve the properties of fluorescent proteins and avoid the introduction of autofluorescence. Next, cryosections are prepared and imaged by fluorescence microscopy. The same sections are used for electron microscopy. Both images are aligned and merged, allowing to localize fluorescent proteins in electron microscopy images. This method was successfully used for peroxisomal membrane contact site research and allows to precisely localize contact site resident proteins at regions where membranes are closely associated at distances far below the resolution of conventional fluorescence microscopy.</p

    Correlative Light- and Electron Microscopy in Peroxisome Research

    No full text
    Correlative light and electron microscopy (CLEM) combines the advantages of protein localization by fluorescence microscopy with the high resolution of electron microscopy. Here, we describe a protocol that we developed for yeast peroxisome research. First, cells are fixed, using conditions that preserve the properties of fluorescent proteins and avoid the introduction of autofluorescence. Next, cryosections are prepared and imaged by fluorescence microscopy. The same sections are used for electron microscopy. Both images are aligned and merged, allowing to localize fluorescent proteins in electron microscopy images. This method was successfully used for peroxisomal membrane contact site research and allows to precisely localize contact site resident proteins at regions where membranes are closely associated at distances far below the resolution of conventional fluorescence microscopy

    Novel targeting assay uncovers targeting information within peroxisomal ABC transporter Pxa1

    Get PDF
    The mechanism behind peroxisomal membrane protein targeting is still poorly understood, with only two yeast proteins believed to be involved and no consensus targeting sequence. Pex19 is thought to bind peroxisomal membrane proteins in the cytosol, and is subsequently recruited by Pex3 at the peroxisomal surface, followed by protein insertion via a mechanism that is as-yet-unknown. However, some peroxisomal membrane proteins still correctly sort in the absence of Pex3 or Pex19, suggesting that multiple sorting pathways exist. Here, we studied sorting of yeast peroxisomal ABC transporter Pxa1. Co-localisation analysis of Pxa1-GFP in a collection of 86 peroxisome-related deletion strains revealed that Pxa1 sorting requires Pex3 and Pex19, while none of the other 84 proteins tested were essential. To identify regions with peroxisomal targeting information in Pxa1, we developed a novel in vivo re-targeting assay, using a reporter consisting of the mitochondrial ABC transporter Mdl1 lacking its N-terminal mitochondrial targeting signal. Using this assay, we showed that the N-terminal 95 residues of Pxa1 are sufficient for retargeting this reporter to peroxisomes. Interestingly, truncated Pxa1 lacking residues 1–95 still localised to peroxisomes. This was confirmed via localisation of various Pxa1 truncation and deletion constructs. However, localisation of Pxa1 lacking residues 1–95 depended on the presence of its interaction partner Pxa2, indicating that this truncated protein does not contain a true targeting signal

    Gluing yeast peroxisomes - composition and function of membrane contact sites

    No full text
    Membrane contact sites are defined as regions of close proximity between two membranes; this association is mediated by protein-protein and/or protein-lipid interactions. Contact sites are often involved in lipid transport, but also can perform other functions. Peroxisomal membrane contact sites have obtained little attention compared to those of other cell organelles. However, recent studies resulted in a big leap in our knowledge of the occurrence, composition and function of peroxisomal contact sites. Studies in yeast strongly contributed to this progress. In this Review, we present an overview of our current knowledge on peroxisomal membrane contact sites in various yeast species, including Hansenula polymorpha, Saccharomyces cerevisiae, Pichia pastoris and Yarrowia lipolytica. Yeast peroxisomes form contacts with almost all other cellular organelles and with the plasma membrane. The absence of a component of a yeast peroxisomal contact site complex results in a range of peroxisomal phenotypes, including metabolic and biogenesis defects and alterations in organelle number, size or position.</p

    Yeast Vps13 is Crucial for Peroxisome Expansion in Cells With Reduced Peroxisome-ER Contact Sites

    Get PDF
    In the yeast Hansenula polymorpha the peroxisomal membrane protein Pex11 and three endoplasmic reticulum localized proteins of the Pex23 family (Pex23, Pex24 and Pex32) are involved in the formation of peroxisome-ER contact sites. Previous studies suggested that these contacts are involved in non-vesicular lipid transfer and important for expansion of the peroxisomal membrane. The absence of Pex32 results in a severe peroxisomal phenotype, while cells lacking Pex11, Pex23 or Pex24 show milder defects and still are capable to form peroxisomes and grow on methanol. We performed transposon mutagenesis on H. polymorpha pex11 cells and selected mutants that lost the capacity to grow on methanol and are severely blocked in peroxisome formation. This strategy resulted in the identification of Vps13, a highly conserved contact site protein involved in bulk lipid transfer. Our data show that peroxisome formation and function is normal in cells of a vps13 single deletion strain. However, Vps13 is essential for peroxisome biogenesis in pex11. Notably, Vps13 is also required for peroxisome formation in pex23 and pex24 cells. These data suggest that Vps13 is crucial for peroxisome formation in cells with reduced peroxisome-endoplasmic reticulum contact sites and plays a redundant function in lipid transfer from the ER to peroxisomes

    Structure-function analysis of the ER-peroxisome contact site protein Pex32

    Get PDF
    In the yeast Hansenula polymorpha, the ER protein Pex32 is required for associating peroxisomes to the ER. Here, we report on a structure-function analysis of Pex32. Localization studies of various Pex32 truncations showed that the N-terminal transmembrane domain of Pex32 is responsible for sorting. Moreover, this part of the protein is sufficient for the function of Pex32 in peroxisome biogenesis. The C-terminal DysF domain is required for concentrating Pex32 at ER-peroxisome contact sites and has the ability to bind to peroxisomes. In order to better understand the role of Pex32 in peroxisome biogenesis, we analyzed various peroxisomal proteins in pex32 cells. This revealed that Pex11 levels are strongly reduced in pex32 cells. This may explain the strong reduction in peroxisome numbers in pex32 cells, which also occurs in cells lacking Pex11

    Comparative Genomics of Peroxisome Biogenesis Proteins:Making Sense of the PEX Proteins

    Get PDF
    PEX genes encode proteins involved in peroxisome biogenesis and proliferation. Using a comparative genomics approach, we clarify the evolutionary relationships between the 37 known PEX proteins in a representative set of eukaryotes, including all common model organisms, pathogenic unicellular eukaryotes and human. A large number of previously unknown PEX orthologs were identified. We analyzed all PEX proteins, their conservation and domain architecture and defined the core set of PEX proteins that is required to make a peroxisome. The molecular processes in peroxisome biogenesis in different organisms were put into context, showing that peroxisomes are not static organelles in eukaryotic evolution. Organisms that lack peroxisomes still contain a few PEX proteins, which probably play a role in alternative processes. Finally, the relationships between PEX proteins of two large families, the Pex11 and Pex23 families, were analyzed, thereby contributing to the understanding of their complicated and sometimes incorrect nomenclature. We provide an exhaustive overview of this important eukaryotic organelle

    Hansenula polymorpha Pex37 is a peroxisomal membrane protein required for organelle fission and segregation

    Get PDF
    Here, we describe a novel peroxin, Pex37, in the yeast Hansenula polymorpha. H. polymorpha Pex37 is a peroxisomal membrane protein, which belongs to a protein family that includes, among others, the Neurospora crassa Woronin body protein Wsc, the human peroxisomal membrane protein PXMP2, the Saccharomyces cerevisiae mitochondrial inner membrane protein Sym1, and its mammalian homologue MPV17. We show that deletion of H. polymorpha PEX37 does not appear to have a significant effect on peroxisome biogenesis or proliferation in cells grown at peroxisome‐inducing growth conditions (methanol). However, the absence of Pex37 results in a reduction in peroxisome numbers and a defect in peroxisome segregation in cells grown at peroxisome‐repressing conditions (glucose). Conversely, overproduction of Pex37 in glucose‐grown cells results in an increase in peroxisome numbers in conjunction with a decrease in their size. The increase in numbers in PEX37‐overexpressing cells depends on the dynamin‐related protein Dnm1. Together our data suggest that Pex37 is involved in peroxisome fission in glucose‐grown cells. Introduction of human PXMP2 in H. polymorpha pex37 cells partially restored the peroxisomal phenotype, indicating that PXMP2 represents a functional homologue of Pex37. H.polymorpha pex37 cells did not show aberrant growth on any of the tested carbon and nitrogen sources that are metabolized by peroxisomal enzymes, suggesting that Pex37 may not fulfill an essential function in transport of these substrates or compounds required for their metabolism across the peroxisomal membrane.This work was supported by a grant from the Marie Curie Initial Training Networks (ITN) program PerFuMe (Grant Agreement Number 316723) to RS, NB, DPD, and IJvdK.Peer reviewe

    Pex24 and Pex32 are required to tether peroxisomes to the ER for organelle biogenesis, positioning and segregation in yeast

    Get PDF
    © 2020. Published by The Company of Biologists Ltd.The yeast Hansenula polymorpha contains four members of the Pex23 family of peroxins, which characteristically contain a DysF domain. Here we show that all four H. polymorpha Pex23 family proteins localize to the endoplasmic reticulum (ER). Pex24 and Pex32, but not Pex23 and Pex29, predominantly accumulate at peroxisome–ER contacts. Upon deletion of PEX24 or PEX32 – and to a much lesser extent, of PEX23 or PEX29 – peroxisome–ER contacts are lost, concomitant with defects in peroxisomal matrix protein import, membrane growth, and organelle proliferation, positioning and segregation. These defects are suppressed by the introduction of an artificial peroxisome–ER tether, indicating that Pex24 and Pex32 contribute to tethering of peroxisomes to the ER. Accumulation of Pex32 at these contact sites is lost in cells lacking the peroxisomal membrane protein Pex11, in conjunction with disruption of the contacts. This indicates that Pex11 contributes to Pex32-dependent peroxisome–ER contact formation. The absence of Pex32 has no major effect on pre-peroxisomal vesicles that occur in pex3 atg1 deletion cells.This work was supported by a grant from the FP7 People: Marie-Curie Actions Initial Training Networks (ITN) program PerFuMe (Grant Agreement Number 316723) to N.B., D.P.D. and I.J.v.d.K., from the China Scholarship Council (CSC) to F.W., and from the Nederlandse Organisatie voor Wetenschappelijk Onderzoek/Chemical Sciences (NWO/CW) to A.A. (711.012.002)

    Hansenula Polymorpha Vac8: A Vacuolar Membrane Protein Required for Vacuole Inheritance and Nucleus-Vacuole Junction Formation

    Get PDF
    Saccharomyces cerevisiae Vac8 is a vacuolar membrane protein, which functions in vacuole inheritance and fusion, nucleus-vacuole junctions, autophagy and the cytoplasm-to-vacuole-targeting pathway. Here, we analyzed Vac8 of the yeast Hansenula polymorpha. We show that HpVac8 localizes to the vacuolar membrane and concentrates in patches at nucleus-vacuole junctions. Analysis of a VAC8 deletion strain indicated that HpVac8 is required for vacuole inheritance and the formation of nuclear-vacuole junctions, but not for vacuole fusion. Previously, organelle proteomics resulted in the identification of Vac8 in peroxisomal fractions isolated from H. polymorpha and S. cerevisiae. However, deletion of H. polymorpha VAC8 had no effect on peroxisome biogenesis or peroxisome-vacuole contact sites
    • …
    corecore