2,159 research outputs found

    Government budgets and the promotion of gender equality in Japan and South Korea

    Get PDF
    노트 : Paper presented to the IAFFE panel of the Society of Heterodox Economics Conference University of New South Wales, Sydney, December 2-3, 201

    Relativistic Hartree approach with exact treatment of vacuum polarization for finite nuclei

    Full text link
    We study the relativistic Hartree approach with the exact treatment of the vacuum polarization in the Walecka sigma-omega model. The contribution from the vacuum polarization of nucleon-antinucleon field to the source term of the meson fields is evaluated by performing the energy integrals of the Dirac Green function along the imaginary axis. With the present method of the vacuum polarization in finite system, the total binding energies and charge radii of 16O and 40Ca can be reproduced. On the other hand, the level-splittings in the single-particle level, in particular the spin-orbit splittings, are not described nicely because the inclusion of vacuum effect provides a large effective mass with small meson fields. We also show that the derivative expansion of the effective action which has been used to calculate the vacuum contribution for finite nuclei gives a fairly good approximation.Comment: 15 pages, 8 figure

    Dimethyl Fumarate Alleviates Dextran Sulfate Sodium-Induced Colitis, through the Activation of Nrf2-Mediated Antioxidant and Anti-inflammatory Pathways.

    Get PDF
    Oxidative stress and chronic inflammation play critical roles in the pathogenesis of ulcerative colitis (UC) and inflammatory bowel diseases (IBD). A previous study has demonstrated that dimethyl fumarate (DMF) protects mice from dextran sulfate sodium (DSS)-induced colitis via its potential antioxidant capacity, and by inhibiting the activation of the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome. This study aims to clarify the nuclear factor erythroid 2-related factor 2/antioxidant responsive element (Nrf2/ARE) pathway pharmacological activation and anti-inflammatory effect by DMF, through focusing on other crucial antioxidant enzymes and inflammatory mediator, including glutamate-cysteine ligase catalytic subunit (GCLC), glutathione peroxidase (GPX) and cyclooxygenase-2 (COX-2), in a DSS-induced colitis mouse model. The oral administration of DMF attenuated the shortening of colons and alleviated colonic inflammation. Furthermore, the expression of key antioxidant enzymes, including GCLC and GPX, in the colonic tissue were significantly increased by DMF administration. In addition, protein expression of the inflammatory mediator, COX-2, was reduced by DMF administration. Our results suggest that DMF alleviates DSS-induced colonic inflammatory damage, likely via up-regulating GCLC and GPX and down-regulating COX-2 protein expression in colonic tissue

    Chemical Etching of Silicon Assisted by Graphene Oxide in an HF–HNO₃ Solution and Its Catalytic Mechanism

    Get PDF
    Chemical etching of silicon assisted by various types of carbon materials is drawing much attention for the fabrication of silicon micro/nanostructures. We developed a method of chemical etching of silicon that utilizes graphene oxide (GO) sheets to promote the etching reaction in a hydrofluoric acid–nitric acid (HF–HNO₃) etchant. By using an optimized composition of the HF–HNO₃ etchant, the etching rate under the GO sheets was 100 times faster than that of our HF–H₂O₂ system used in a previous report. Kinetic analyses showed that the activation energy of the etching reaction was almost the same at both the bare silicon and GO-covered areas. We propose that adsorption sites for the reactant in the GO sheets enhance the reaction frequency, leading to a deeper etching in the GO areas than the bare areas. Furthermore, GO sheets with more defects were found to have higher catalytic activities. This suggests that defects in the GO sheets function as adsorption sites for the reactant, thereby enhancing the etching rate under the sheets

    Cdc42 GEF Tuba regulates the junctional configuration of simple epithelial cells

    Get PDF
    Epithelial cells are typically arranged in a honeycomb-like pattern, minimizing their cell–cell contact areas, which suggests that some tension operates for shaping of the cell boundaries. However, the molecular mechanisms that generate such tension remain unknown. We found that Tuba, which is a Cdc42-specific GEF, was concentrated at the apical-most region of cell junctions in simple epithelia via its interaction with ZO-1. RNAi–mediated depletion of Tuba altered the geometrical configuration of cell junctions, resulting in a curved and slack appearance. At the subcellular level, Tuba inactivation modified the assembly pattern of junctional F-actin and E-cadherin. Tuba RNAi also retarded cell junction formation in calcium-switch experiments. Suppression of Cdc42 activity or depletion of N-WASP, which is an effector of Cdc42, mimicked the effects of Tuba depletion. Conversely, overexpression of dominant-active Cdc42 or N-WASP enhanced the junction formation of Tuba-depleted cells. These results suggest that Tuba controls the shaping of cell junctions through the local activation of Cdc42 and its effectors
    corecore