234 research outputs found

    Location Reference Recognition from Texts: A Survey and Comparison

    Full text link
    A vast amount of location information exists in unstructured texts, such as social media posts, news stories, scientific articles, web pages, travel blogs, and historical archives. Geoparsing refers to recognizing location references from texts and identifying their geospatial representations. While geoparsing can benefit many domains, a summary of its specific applications is still missing. Further, there is a lack of a comprehensive review and comparison of existing approaches for location reference recognition, which is the first and core step of geoparsing. To fill these research gaps, this review first summarizes seven typical application domains of geoparsing: geographic information retrieval, disaster management, disease surveillance, traffic management, spatial humanities, tourism management, and crime management. We then review existing approaches for location reference recognition by categorizing these approaches into four groups based on their underlying functional principle: rule-based, gazetteer matching–based, statistical learning-–based, and hybrid approaches. Next, we thoroughly evaluate the correctness and computational efficiency of the 27 most widely used approaches for location reference recognition based on 26 public datasets with different types of texts (e.g., social media posts and news stories) containing 39,736 location references worldwide. Results from this thorough evaluation can help inform future methodological developments and can help guide the selection of proper approaches based on application needs

    High Quantum Efficiency Rare-Earth-Doped Gd<sub>2</sub>O<sub>2</sub>S:Tb, F Scintillators for Cold Neutron Imaging

    No full text
    High-resolution neutron radiography provides novel and stirring opportunities to investigate the structures of light elements encased by heavy elements. For this study, a series of Gd2O2S:Tb, F particles were prepared using a high-temperature solid phase method and then used as a scintillation screen. Upon reaching 293 nm excitation, a bright green emission originated from the Tb3+ luminescence center. The level of F doping affected the fluorescence intensity. When the F doping level was 8 mol%, the fluorescence intensity was at its highest. The absolute quantum yield of the synthesized particles reached as high as 77.21%. Gd2O2S:Tb, F particles were applied to the scintillation screen, showing a resolution on the neutron radiograph as high as 12 μm. These results suggest that the highly efficient Gd2O2S:Tb, F particles are promising scintillators for the purposes of cold neutron radiography

    Percutaneous angioplasty and/or stenting versus aggressive medical therapy in patients with symptomatic intracranial atherosclerotic stenosis: a 1-year follow-up study

    Get PDF
    BackgroundSymptomatic intracranial atherosclerotic stenosis (sICAS) is one of the common causes of ischemic stroke. However, the treatment of sICAS remains a challenge in the past with unfavorable findings. The purpose of this study was to explore the effect of stenting versus aggressive medical management on preventing recurrent stroke in patients with sICAS.MethodsWe prospectively collected the clinical information of patients with sICAS who underwent percutaneous angioplasty and/or stenting (PTAS) or aggressive medical therapy from March 2020 to February 2022. Propensity score matching (PSM) was employed to ensure well-balanced characteristics of two groups. The primary outcome endpoint was defined as recurrent stroke or transient ischemic attack (TIA) within 1 year.ResultsWe enrolled 207 patients (51 in the PTAS and 156 in the aggressive medical groups) with sICAS. No significant difference was found between PTAS group and aggressive medical group for the risk of stroke or TIA in the same territory beyond 30 days through 6 months (P = 0.570) and beyond 30 days through 1 year (P = 0.739) except for within 30 days (P = 0.003). Furthermore, none showed a significant difference for disabling stroke, death and intracranial hemorrhage within 1 year. These results remain stable after adjustment. After PSM, all the outcomes have no significant difference between these two groups.ConclusionThe PTAS has similar treatment outcomes compared with aggressive medical therapy in patients with sICAS across 1-year follow-up

    Accelerating the Gas–Solid Interactions for Conductometric Gas Sensors: Impacting Factors and Improvement Strategies

    No full text
    Metal oxide-based conductometric gas sensors (CGS) have showcased a vast application potential in the fields of environmental protection and medical diagnosis due to their unique advantages of high cost-effectiveness, expedient miniaturization, and noninvasive and convenient operation. Of multiple parameters to assess the sensor performance, the reaction speeds, including response and recovery times during the gas–solid interactions, are directly correlated to a timely recognition of the target molecule prior to scheduling the relevant processing solutions and an instant restoration aimed for subsequent repeated exposure tests. In this review, we first take metal oxide semiconductors (MOSs) as the case study and conclude the impact of the semiconducting type as well as the grain size and morphology of MOSs on the reaction speeds of related gas sensors. Second, various improvement strategies, primarily including external stimulus (heat and photons), morphological and structural regulation, element doping, and composite engineering, are successively introduced in detail. Finally, challenges and perspectives are proposed so as to provide the design references for future high-performance CGS featuring swift detection and regeneration

    Anti-missile defense directional characteristics modeling of Aegis warship formation

    No full text
    Through flexible configuration of warship formation, the Aegis Warship Formation achieves interception and defense of targets in different attack directions. Based on the warship coordinate system and target coordinate system, the detection and interception zone models of Aegis warship formation are constructed. The functional simulation models of guidance radar and SM-3 interceptor are integrated to propose a dynamic simulation modeling method for anti-missile defense of warship formations. The detection directional coefficient and killing directional coefficient are defined, which are used to quantitatively evaluate the directional characteristics of the formation anti-missile defense. The simulations are conducted with a typical case of two-ship Aegis formation, and useful conclusions are obtained. The results can provide support for battlefield offensive and defensive situation assessment

    A Cross-Sectional Study on Gluteal Muscles in Patients with Ankylosing Spondylitis at Different Stages of Hip Involvement

    No full text
    Hip involvement in ankylosing spondylitis (AS) is associated with severe functional impairment, and early diagnosis can improve the disease prognosis. We investigated gluteal muscle cross-sectional area (CSA) and radiodensity at different stages of hip involvement and their associations with AS-related clinical and laboratory parameters. This cross-sectional study included 83 patients with AS and 83 age- and sex-matched controls. Patients with AS were divided into three groups according to the Bath Ankylosing Spondylitis Radiology Hip Index system. The CSA and radiodensity of the gluteus maximus, medius, and minimus muscles were measured using computed tomography images. Muscle parameters were compared, and their relationships with clinical and laboratory parameters were evaluated. For the gluteus maximus, patients with AS had a lower CSA than controls, regardless of the degree of hip involvement. For the gluteus medius and minimus, patients with moderate/advanced hip involvement had significantly lower CSA and radiodensity than those with mild to no hip involvement. The severity of hip involvement was negatively associated with muscle parameters. CSA of the gluteus maximus decreased in early-stage hip involvement without any changes in radiographs, while radiodensity decreased in the later stages. Muscle parameters on computed tomography may be a more sensitive indicator than radiographic findings

    Cigarette smoke triggers calcium overload in mouse hippocampal neurons via the ΔFOSB-CACNA2D1 axis to impair cognitive performance

    No full text
    A growing body of evidence shows that cigarette smoking impairs cognitive performance. The 'Calcium Hypothesis' theory of neuronopathies reveals a critical role of aberrant calcium signaling in compromised cognitive functions. However, the underlying implications of abnormalities in calcium signaling in the neurotoxicity induced by cigarette smoke (CS) have not yet been identified. CACNA2D1, an important auxiliary subunit involved in the composition of voltage-gated calcium channels (VGCCs), was reported to affect the calcium signaling in neurons by facilitating VGCCs-mediated Ca2+ influx. ΔFOSB, an alternatively-spliced product of the Fosb gene, is an activity-dependent transcription factor induced robustly in the brain in response to environmental stimuli such as CS. Interestingly, our preliminary bioinformatics analysis revealed a significant co-expression between ΔFOSB and CACNA2D1 in brain tissues of patients with neurodegenerative diseases characterized by progressive cognitive decline. Therefore, we hypothesized that the activation of the ΔFOSB-CACNA2D1 axis in response to CS exposure might cause dysregulation of calcium homeostasis in hippocampal neurons via VGCCs-mediated Ca2+ influx, thereby contributing to cognitive deficits. To this end, the present study established a CS-induced mouse model of hippocampus-dependent cognitive impairment, in which the activation of the ΔFOSB-CACNA2D1 axis accompanied by severe calcium overload was observed in the mouse hippocampal tissues. More importantly, ΔFOSB knockdown-/overexpression-mediated inactivation/activation of the ΔFOSB-CACNA2D1 axis interdicted/mimicked CS-induced dysregulation of calcium homeostasis followed by severe cellular damage in HT22 mouse hippocampal neurons. Mechanistically speaking, a further ChIP-qPCR assay confirmed the physical interaction between transcription factor ΔFOSB and the Cacna2d1 gene promoter, suggesting a direct transcriptional regulation of the Cacna2d1 gene by ΔFOSB. Overall, our current work aims to deliver a unique insight into the neurotoxic mechanisms induced by CS to explore potential targets for intervention

    Revealing intrinsic domains and fluctuations of moir\'e magnetism by a wide-field quantum microscope

    Full text link
    Moir\'e magnetism featured by stacking engineered atomic registry and lattice interactions has recently emerged as an appealing quantum state of matter at the forefront condensed matter physics research. Nanoscale imaging of moir\'e magnets is highly desirable and serves as a prerequisite to investigate a broad range of intriguing physics underlying the interplay between topology, electronic correlations, and unconventional nanomagnetism. Here we report spin defect-based wide-field imaging of magnetic domains and spin fluctuations in twisted double trilayer (tDT) chromium triiodide CrI3. We explicitly show that intrinsic moir\'e domains of opposite magnetizations appear over arrays of moir\'e supercells in low-twist-angle tDT CrI3. In contrast, spin fluctuations measured in tDT CrI3 manifest little spatial variations on the same mesoscopic length scale due to the dominant driving force of intralayer exchange interaction. Our results enrich the current understanding of exotic magnetic phases sustained by moir\'e magnetism and highlight the opportunities provided by quantum spin sensors in probing microscopic spin related phenomena on two-dimensional flatland
    • …