5 research outputs found

    Virtual Ontogeny of Cortical Growth Preceding Mental Illness

    Get PDF
    Background: Morphology of the human cerebral cortex differs across psychiatric disorders, with neurobiology and developmental origins mostly undetermined. Deviations in the tangential growth of the cerebral cortex during pre/perinatal periods may be reflected in individual variations in cortical surface area later in life. Methods: Interregional profiles of group differences in surface area between cases and controls were generated using T1-weighted magnetic resonance imaging from 27,359 individuals including those with attention-deficit/hyperactivity disorder, autism spectrum disorder, bipolar disorder, major depressive disorder, schizophrenia, and high general psychopathology (through the Child Behavior Checklist). Similarity of interregional profiles of group differences in surface area and prenatal cell-specific gene expression was assessed. Results: Across the 11 cortical regions, group differences in cortical area for attention-deficit/hyperactivity disorder, schizophrenia, and Child Behavior Checklist were dominant in multimodal association cortices. The same interregional profiles were also associated with interregional profiles of (prenatal) gene expression specific to proliferative cells, namely radial glia and intermediate progenitor cells (greater expression, larger difference), as well as differentiated cells, namely excitatory neurons and endothelial and mural cells (greater expression, smaller difference). Finally, these cell types were implicated in known pre/perinatal risk factors for psychosis. Genes coexpressed with radial glia were enriched with genes implicated in congenital abnormalities, birth weight, hypoxia, and starvation. Genes coexpressed with endothelial and mural genes were enriched with genes associated with maternal hypertension and preterm birth. Conclusions: Our findings support a neurodevelopmental model of vulnerability to mental illness whereby prenatal risk factors acting through cell-specific processes lead to deviations from typical brain development during pregnancy

    Understanding the complexity of IgE-related phenotypes from childhood to young adulthood: a Mechanisms of the Development of Allergy (MeDALL) seminar

    No full text
    Mechanisms of the Development of Allergy (MeDALL), a Seventh Framework Program European Union project, aims to generate novel knowledge on the mechanisms of initiation of allergy. Precise phenotypes of IgE-mediated allergic diseases will be defined in MeDALL. As part of MeDALL, a scientific seminar was held on January 24, 2011, to review current knowledge on the IgE-related phenotypes and to explore how a multidisciplinary effort could result in a new integrative translational approach. This article provides a summary of the meeting. It develops challenges in IgE-related phenotypes and new clinical and epidemiologic approaches to the investigation of allergic phenotypes, including cluster analysis, scale-free models, candidate biomarkers, and IgE microarrays; the particular case of severe asthma was reviewed. Then novel approaches to the IgE-associated phenotypes are reviewed from the individual mechanisms to the systems, including epigenetics, human in vitro immunology, systems biology, and animal models. The last chapter deals with the understanding of the population-based IgE-associated phenotypes in children and adolescents, including age effect in terms of maturation, observed effects of early-life exposures and shift of focus from early life to pregnancy, gene-environment interactions, cohort effects, and time trends in patients with allergic diseases. This review helps to define phenotypes of allergic diseases in MeDALL

    Understanding the complexity of IgE-related phenotypes from childhood to young adulthood: A Mechanisms of the Development of Allergy (MeDALL) Seminar

    No full text
    Mechanisms of the Development of Allergy (MeDALL), a Seventh Framework Program European Union project, aims to generate novel knowledge on the mechanisms of initiation of allergy. Precise phenotypes of IgE-mediated allergic diseases will be defined in MeDALL. As part of MeDALL, a scientific seminar was held on January 24, 2011, to review current knowledge on the IgE-related phenotypes and to explore how a multidisciplinary effort could result in a new integrative translational approach. This article provides a summary of the meeting. It develops challenges in IgE-related phenotypes and new clinical and epidemiologic approaches to the investigation of allergic phenotypes, including cluster analysis, scale-free models, candidate biomarkers, and IgE microarrays; the particular case of severe asthma was reviewed. Then novel approaches to the IgE-associated phenotypes are reviewed from the individual mechanisms to the systems, including epigenetics, human in vitro immunology, systems biology, and animal models. The last chapter deals with the understanding of the population-based IgE-associated phenotypes in children and adolescents, including age effect in terms of maturation, observed effects of early-life exposures and shift of focus from early life to pregnancy, gene-environment interactions, cohort effects, and time trends in patients with allergic diseases. This review helps to define phenotypes of allergic diseases in MeDALL. (J Allergy Clin Immunol 2012;129:943-54.

    Felt PET: A material research project

    No full text
    Wool has long been used by nomadic Mongolian herds-people as a cladding for their traditional dwellings and as a material for crafting everyday objects. A moldable, lightweight material into which other materials and forms can easily be embedded, wool felt has a distinct aesthetic and an inviting tactile duality. The Felt PET project challenges urban dwellers to see that material/structural innovations and strategic spatial effects can be produced from wool felt. The claddings I propose are designed around common activities and events. They intentionally shift between addressing the body and the architectural interior spaces the body inhabits. Though handcrafted and idiosyncratic, felting wool can produce claddings whose function and program vary across a continuous surface or landscape. By capitalizing on the enormous potential of wool for producing soft, flexible, portable, innovative, and playful interior environments, I see Felt PET as a viable and critical choice for a contemporary cultural artifact. (Abstract shortened by UMI.
    corecore