184 research outputs found

    International Federation for Emergency Medicine model curriculum for medical student education in emergency medicine

    Get PDF
    There is a critical and growing need for emergency physicians and emergency medicine resources worldwide. To meet this need, physicians must be trained to deliver time-sensitive interventions and life-saving emergency care. Currently, there is no internationally recognized, standard curriculum that defines the basic minimum standards for emergency medicine education. To address this lack, the International Federation for Emergency Medicine (IFEM) convened a committee of international physicians, health professionals, and other experts in emergency medicine and international emergency medicine development to outline a curriculum for foundation training of medical students in emergency medicine. This curriculum document represents the consensus of recommendations by this committee. The curriculum is designed with a focus on the basic minimum emergency medicine educational content that any medical school should be delivering to its students during their undergraduate years of training. It is not designed to be prescriptive, but to assist educators and emergency medicine leadership in advancing physician education in basic emergency medicine content. The content would be relevant, not just for communities with mature emergency medicine systems, but also for developing nations or for nations seeking to expand emergency medicine within current educational structures. We anticipate that there will be wide variability in how this curriculum is implemented and taught, reflecting the existing educational milieu, the resources available, and the goals of the institutions’ educational leadership

    Voltage-dependent calcium influx in human sperm assessed by simultaneous optical detection of intracellular calcium and membrane potential

    Get PDF
    AbstractThere are several physiological and pharmacological evidences indicating that opening of voltage dependent calcium channels play a crucial role in the induction of the acrosome reaction in mammalian sperm. In mature sperm, physiological inductors of the acrosome reaction such as ZP3, a zona pellucida protein, and the steroid hormone progesterone, induce depolarization and calcium influx, which are required for the acrosome reaction. In this paper, we describe a voltage-dependent calcium influx present in human sperm. We report an experimental procedure that allows measurement of intracellular calcium and membrane potential simultaneously using the fluorescent dyes DiSC3(5) and Fura-2. We found that in human uncapacitated sperm, depolarization induces a nifedipine-insensitive calcium influx that, in most cases, was transient. Calcium influx was observed in the range of −60 to −15 mV (the range tested). At resting membrane potential (around −40 mV), potassium addition depolarized and induced calcium influx, but when the depolarization was preceded by a hyperpolarization (induced with valinomycin), calcium influx was remarkably enhanced, suggesting that at −40 mV, channels are in a putative inactivated state. When sperm was incubated in medium without calcium, calcium restoration caused calcium influx that depended on voltage, and decayed between 1 and 2 min after depolarization. Unlike ram, mouse or bovine sperm, in which an alkalinization is required to induce calcium influx with potassium, the voltage-dependent calcium influx observed in human sperm did not require an increase in internal or external pH. However, we observed that ammonium, which increases intracellular pH, enhanced the voltage-dependent calcium influx about 90%. Furthermore, depolarization by itself caused a small increase in intracellular pH suggesting that pH can be regulated by membrane potential in human sperm

    Specific local induction of DNA strand breaks by infrared multi-photon absorption

    Get PDF
    Highly confined DNA damage by femtosecond laser irradiation currently arises as a powerful tool to understand DNA repair in live cells as a function of space and time. However, the specificity with respect to damage type is limited. Here, we present an irradiation procedure based on a widely tunable Er/Yb : fiber femtosecond laser source that favors the formation of DNA strand breaks over that of UV photoproducts by more than one order of magnitude. We explain this selectivity with the different power dependence of the reactions generating strand breaks, mainly involving reactive radical intermediates, and the direct photochemical process leading to UV-photoproducts. Thus, localized multi-photon excitation with a wavelength longer than 1 µm allows for the selective production of DNA strand breaks at sub-micrometer spatial resolution in the absence of photosensitizers

    A Time-Series Method for Automated Measurement of Changes in Mitotic and Interphase Duration from Time-Lapse Movies

    Get PDF
    Automated time-lapse microscopy can visualize proliferation of large numbers of individual cells, enabling accurate measurement of the frequency of cell division and the duration of interphase and mitosis. However, extraction of quantitative information by manual inspection of time-lapse movies is too time-consuming to be useful for analysis of large experiments.Here we present an automated time-series approach that can measure changes in the duration of mitosis and interphase in individual cells expressing fluorescent histone 2B. The approach requires analysis of only 2 features, nuclear area and average intensity. Compared to supervised learning approaches, this method reduces processing time and does not require generation of training data sets. We demonstrate that this method is as sensitive as manual analysis in identifying small changes in interphase or mitotic duration induced by drug or siRNA treatment.This approach should facilitate automated analysis of high-throughput time-lapse data sets to identify small molecules or gene products that influence timing of cell division

    Role of Glutathione Redox State in Oxygen Sensing by Carotid Body Chemoreceptor Cells

    Get PDF
    Producción CientíficaThis article first presents some basic structural traits of the carotid body (CB) arterial chemoreceptors to understand the relationship between the arterial blood PO2 and the activation of chemoreceptor cells, which are the O2 sensing structures of the CB. Some considerations in relation to the intensity of CB blood flow and O2 consumption of the organ would allow us to define the threshold for the detection of the hypoxic stimulus, which would lead us to the cardinal theme of the article, namely whether at the PO2 levels detected by the CB there alterations in the genesis of re-active oxygen species (ROS). An alteration in the rate of ROS productionwould impinge on the glutathione system [reduced glutathione (GSH) and oxidized glutathione (GSSG)], causing modifications in the GSH/GSSG ratio that are detected by direct measurement; the GSH/GSSG system rep-resents the quantitatively most important mechanism to dispose ROS and to maintain the overall redox status or redox environment in mammalian cells.1 The relationship between GSH/GSSG and oxygen chemoreception is approached from two different points of view. We will measure GSH/GSSG levels and calculate the redox environment of the cells and correl-ation with the activity of chemoreceptor cells in normoxia and in hypoxia. We will also present data on pharmacological manipulation of the redox environment of the cells, as assessed by GSH/GSSG quotients, and pos-sible correlations with the level of activity of chemoreceptor cells. The possible mechanisms of coupling between ROS and the GSH/GSSG system to the cellular effector machineries have been reviewed.2,

    A Novel Molecular Solution for Ultraviolet Light Detection in Caenorhabditis elegans

    Get PDF
    For many organisms the ability to transduce light into cellular signals is crucial for survival. Light stimulates DNA repair and metabolism changes in bacteria, avoidance responses in single-cell organisms, attraction responses in plants, and both visual and nonvisual perception in animals. Despite these widely differing responses, in all of nature there are only six known families of proteins that can transduce light. Although the roundworm Caenorhabditis elegans has none of the known light transduction systems, we show here that C. elegans strongly accelerates its locomotion in response to blue or shorter wavelengths of light, with maximal responsiveness to ultraviolet light. Our data suggest that C. elegans uses this light response to escape the lethal doses of sunlight that permeate its habitat. Short-wavelength light drives locomotion by bypassing two critical signals, cyclic adenosine monophosphate (cAMP) and diacylglycerol (DAG), that neurons use to shape and control behaviors. C. elegans mutants lacking these signals are paralyzed and unresponsive to harsh physical stimuli in ambient light, but short-wavelength light rapidly rescues their paralysis and restores normal levels of coordinated locomotion. This light response is mediated by LITE-1, a novel ultraviolet light receptor that acts in neurons and is a member of the invertebrate Gustatory receptor (Gr) family. Heterologous expression of the receptor in muscle cells is sufficient to confer light responsiveness on cells that are normally unresponsive to light. Our results reveal a novel molecular solution for ultraviolet light detection and an unusual sensory modality in C. elegans that is unlike any previously described light response in any organism

    Incorporation of DPP6a and DPP6K Variants in Ternary Kv4 Channel Complex Reconstitutes Properties of A-type K Current in Rat Cerebellar Granule Cells

    Get PDF
    Dipeptidyl peptidase-like protein 6 (DPP6) proteins co-assemble with Kv4 channel α-subunits and Kv channel-interacting proteins (KChIPs) to form channel protein complexes underlying neuronal somatodendritic A-type potassium current (ISA). DPP6 proteins are expressed as N-terminal variants (DPP6a, DPP6K, DPP6S, DPP6L) that result from alternative mRNA initiation and exhibit overlapping expression patterns. Here, we study the role DPP6 variants play in shaping the functional properties of ISA found in cerebellar granule (CG) cells using quantitative RT-PCR and voltage-clamp recordings of whole-cell currents from reconstituted channel complexes and native ISA channels. Differential expression of DPP6 variants was detected in rat CG cells, with DPP6K (41±3%)>DPP6a (33±3%)>>DPP6S (18±2%)>DPP6L (8±3%). To better understand how DPP6 variants shape native neuronal ISA, we focused on studying interactions between the two dominant variants, DPP6K and DPP6a. Although previous studies did not identify unique functional effects of DPP6K, we find that the unique N-terminus of DPP6K modulates the effects of KChIP proteins, slowing recovery and producing a negative shift in the steady-state inactivation curve. By contrast, DPP6a uses its distinct N-terminus to directly confer rapid N-type inactivation independently of KChIP3a. When DPP6a and DPP6K are co-expressed in ratios similar to those found in CG cells, their distinct effects compete in modulating channel function. The more rapid inactivation from DPP6a dominates during strong depolarization; however, DPP6K produces a negative shift in the steady-state inactivation curve and introduces a slow phase of recovery from inactivation. A direct comparison to the native CG cell ISA shows that these mixed effects are present in the native channels. Our results support the hypothesis that the precise expression and co-assembly of different auxiliary subunit variants are important factors in shaping the ISA functional properties in specific neuronal populations

    An externally validated age-related model of mean follicle density in the cortex of the human ovary

    Get PDF
    The population of non-growing follicles present in the ovary is defined as the ovarian reserve. This underpins the reproductive lifespan in women, with its depletion determining age at loss of fertility and the menopause. Data amassed from published results of indirect invasive and non-invasive procedures has resulted in the generation of predictive models which estimate the ovarian reserve from conception throughout adult life. The distribution of follicles in the ovary is not uniform, with the great majority of NGFs located in the cortex, which is the region normally biopsied and used for fertility preservation. Previous models have however analysed whole ovary NGF populations and ovarian volumes, but not cortical NGF density. In this study we compared mean non-growing follicle density values obtained from tissue samples from 13 ovarian cortical biopsies (16-37 years) against age- matched model-predicted values generated from population and ovarian volume models, taking into account the proportion of the ovary that is cortex. A mean non-growing follicle density was calculated for each patient by counting all follicles in a given volume of freshly biopsied ovarian cortical tissue. These values were compared to age-matched model generated densities and the correlation between data sets tested. Non-growing follicle density values obtained from fresh biopsied ovarian cortex samples closely matched model generated data with low mean difference, tight agreement limits and no proportional error between the observed and predicted results. These findings validate the use of the population and ovarian volume models to accurately predict mean follicle density in the ovarian cortex of adult women.Publisher PDFPeer reviewe
    corecore