2,336 research outputs found

    Parameters controlling nitric oxide emissions from gas turbine combustors

    Get PDF
    Nitric oxide forms in the primary zone of gas turbine combustors where the burnt gas composition is close to stoichiometric and gas temperatures are highest. It has been found that combustor air inlet conditions, mean primary zone fuel-air ratio, residence time, and the uniformity of the primary zone are the most important variables affecting nitric oxide emissions. Relatively simple model of the flow in a gas turbine combustor, coupled with a rate equation for nitric oxide formation via the Zeldovich mechanism are shown to correlate the variation in measured NOx emissions. Data from a number of different combustor concepts are analyzed and shown to be in reasonable agreement with predictions. The NOx formulation model is used to assess the extent to which an advanced combustor concept, the NASA swirl can, has produced a lean well-mixed primary zone generally believed to be the best low NOx emissions burner type

    LANDSAT application of remote sensing to shoreline-form analysis

    Get PDF
    There are no author-identified significant results in this report

    Air pollution from aircraft

    Get PDF
    A model which predicts nitric oxide and carbon monoxide emissions from a swirl can modular combustor is discussed. A detailed analysis of the turbulent fuel-air mixing process in the swirl can module wake region is reviewed. Hot wire anemometry was employed, and gas sampling analysis of fuel combustion emissions were performed

    Premixing quality and flame stability: A theoretical and experimental study

    Get PDF
    Models for predicting flame ignition and blowout in a combustor primary zone are presented. A correlation for the blowoff velocity of premixed turbulent flames is developed using the basic quantities of turbulent flow, and the laminar flame speed. A statistical model employing a Monte Carlo calculation procedure is developed to account for nonuniformities in a combustor primary zone. An overall kinetic rate equation is used to describe the fuel oxidation process. The model is used to predict the lean ignition and blow out limits of premixed turbulent flames; the effects of mixture nonuniformity on the lean ignition limit are explored using an assumed distribution of fuel-air ratios. Data on the effects of variations in inlet temperature, reference velocity and mixture uniformity on the lean ignition and blowout limits of gaseous propane-air flames are presented

    Air pollution from aircraft

    Get PDF
    A series of fundamental problems related to jet engine air pollution and combustion were examined. These include soot formation and oxidation, nitric oxide and carbon monoxide emissions mechanisms, pollutant dispension, flow and combustion characteristics of the NASA swirl can combustor, fuel atomization and fuel-air mixing processes, fuel spray drop velocity and size measurement, ignition and blowout. A summary of this work, and a bibliography of 41 theses and publications which describe this work, with abstracts, is included

    Shoreline configuration and shoreline dynamics: A mesoscale analysis

    Get PDF
    The author has identified the following significant results. Atlantic coast barrier island shorelines are seldom straight, but rather sinuous. These shoreline curvatures range in size from cusps to capes. Significant relationships exist between the orientation of shoreline segments within the larger of these sinuous features and shoreline dynamics, with coefficients ranging up to .9. Orientation of the shoreline segments of Assateague Island (60 km) and the Outer Banks of North Carolina (130 km) was measured from LANDSAT 2 imagery (1:80,000) and high altitude aerial photography (1:120,000). Long term trends in shoreline dynamics were established by mapping shoreline and storm-surge penetration changes

    Nitric oxide formation in gas turbine engines: A theoretical and experimental study

    Get PDF
    A modified Zeldovich kinetic scheme was used to predict nitric oxide formation in the burned gases. Nonuniformities in fuel-air ratio in the primary zone were accounted for by a distribution of fuel-air ratios. This was followed by one or more dilution zones in which a Monte Carlo calculation was employed to follow the mixing and dilution processes. Predictions of NOX emissions were compared with various available experimental data, and satisfactory agreement was achieved. In particular, the model is applied to the NASA swirl-can modular combustor. The operating characteristics of this combustor which can be inferred from the modeling predictions are described. Parametric studies are presented which examine the influence of the modeling parameters on the NOX emission level. A series of flow visualization experiments demonstrates the fuel droplet breakup and turbulent recirculation processes. A tracer experiment quantitatively follows the jets from the swirler as they move downstream and entrain surrounding gases. Techniques were developed for calculating both fuel-air ratio and degree of nonuniformity from measurements of CO2, CO, O2, and hydrocarbons. A burning experiment made use of these techniques to map out the flow field in terms of local equivalence ratio and mixture nonuniformity

    LANDSAT application of remote sensing to shoreline-form analysis

    Get PDF
    The author has identified the following significant results. Orientation of the shoreline segments of Assateague Island (55 km) was measured from LANDSAT 2 imagery enlarged to 1:250,000 and 1:80,000. Long term trends in shoreline dynamics were established by mapping shoreline and storm-surge penetration changes from historical low altitude aerial photography spanning four decades

    LANDSAT application of remote sensing to shoreline-form analysis

    Get PDF
    The author has identified the following significant results. LANDSAT imagery of the southern end of Assateague Island, Virginia, was enlarged to 1:80,000 and compared with high altitude (1:130,000) and low altitude (1:24,000) aerial photography in an attempt to quantify change in land area over a nine month period. Change in area and configuration was found with LANDSAT and low altitude photography. Change in configuration, but no change in area was found with high altitude photography. Due to tidal differences at time of image obtention and lack of baseline data, the accuracy of the LANDSAT measurements could not be determined. They were consistent with the measurements from the low altitude photography

    Computer simulation of the heavy-duty turbo-compounded diesel cycle for studies of engine efficiency and performance

    Get PDF
    Reductions in heat loss at appropriate points in the diesel engine which result in substantially increased exhaust enthalpy were shown. The concepts for this increased enthalpy are the turbocharged, turbocompounded diesel engine cycle. A computer simulation of the heavy duty turbocharged turbo-compounded diesel engine system was undertaken. This allows the definition of the tradeoffs which are associated with the introduction of ceramic materials in various parts of the total engine system, and the study of system optimization. The basic assumptions and the mathematical relationships used in the simulation of the model engine are described
    corecore