2,450 research outputs found

    Somatization vs. Psychologization of Emotional Distress: A Paradigmatic Example for Cultural Psychopathology

    Get PDF
    This paper describes the developing area of cultural psychopathology, an interdisciplinary field of study focusing on the ways in which cultural factors contribute to the experience and expression of psychological distress. We begin by outlining two approaches, often competing, in order to provide a background to some of the issues that complicate the field. The main section of the paper is devoted to a discussion of depression in Chinese culture as an example of the types of questions that can be studied. Here, we start with a review of the epidemiological literature, suggesting low rates of depression in China, and move to the most commonly cited explanation, namely that Chinese individuals with depression present this distress in a physical way. Different explanations of this phenomenon, known as somatization, are explored and reconceptualized according to an increasingly important model for cross-cultural psychologists: the cultural constitution of the self. We close by discussing some of the contributions, both theoretical and methodological, that can be made by cross-cultural psychologists to researchers in cultural psychopathology

    Long period polytype boundaries in silicon carbide

    Get PDF
    A significant gap in our understanding of polytypism exists, caused partly by the lack of experimental data on the spatial distribution of polytype coalescence and knowledge of the regions between adjoining polytypes. Few observations, Takei & Francombe (1967) apart, of the relative location of different polytypes have been reported. A phenomenological description of the boundaries, exact position of one-dimensional disorder (1DD) and long period polytypes (LPP’s) has been made possible by synchrotron X-ray diffraction topography (XRDT)

    Entanglement in Quantum Spin Chains, Symmetry Classes of Random Matrices, and Conformal Field Theory

    Full text link
    We compute the entropy of entanglement between the first NN spins and the rest of the system in the ground states of a general class of quantum spin-chains. We show that under certain conditions the entropy can be expressed in terms of averages over ensembles of random matrices. These averages can be evaluated, allowing us to prove that at critical points the entropy grows like κlog2N+κ~\kappa\log_2 N + {\tilde \kappa} as NN\to\infty, where κ\kappa and κ~{\tilde \kappa} are determined explicitly. In an important class of systems, κ\kappa is equal to one-third of the central charge of an associated Virasoro algebra. Our expression for κ\kappa therefore provides an explicit formula for the central charge.Comment: 4 page

    Early transitions and tertiary enrolment: The cumulative impact of primary and secondary effects on entering university in Germany

    Full text link
    Our aim is to assess how the number of working class students entering German universities can effectively be increased. Therefore, we estimate the proportion of students from the working class that would successfully enter university if certain policy interventions were in place to eliminate primary effects (performance differentials between social classes) and/or secondary effects (choice differentials net of performance) at different transition points. We extend previous research by analysing the sequence of transitions between elementary school enrolment and university enrolment and by accounting for the impact that manipulations at earlier transitions have on the performance distribution and size of the student ‘risk-set’ at subsequent transitions. To this end, we develop a novel simulation procedure which also seeks to find viable solutions to the shortcomings in the German data landscape. Our findings show that interventions are most effective if they take place early in the educational career. Neutralizing secondary effects at the transition to upper secondary school proves to be the single most effective means to increase participation rates in tertiary education among working class students. However, this comes at the expense of lower average performance levels. (DIPF/author

    Metal-to-insulator crossover and pseudogap in single-layer compound Bi2+x_{2+x}Sr2x_{2-x}Cu1+y_{1+y}O6+δ_{6+\delta} single crystals in high magnetic fields

    Full text link
    The in-plane ρab(H)\rho_{ab}(H) and the out-of-plane ρc(H)\rho_c(H) magneto-transport in magnetic fields up to 28 T has been investigated in a series of high quality, single crystal, hole-doped La-free Bi2201 cuprates for a wide doping range and over a wide range of temperatures down to 40 mK. With decreasing hole concentration going from the overdoped (p=0.2) to the underdoped (p=0.12) regimes, a crossover from a metallic to and insulating behavior of ρab(T)\rho_{ab}(T) is observed in the low temperature normal state, resulting in a disorder induced metal insulator transition. In the zero temperature limit, the normal state ratio ρc(H)/ρab(H)\rho_c(H)/\rho_{ab}(H) of the heavily underdoped samples in pure Bi2201 shows an anisotropic 3D behavior, in striking contrast with that observed in La-doped Bi2201 and LSCO systems. Our data strongly support that that the negative out-of-plane magnetoresistance is largely governed by interlayer conduction of quasiparticles in the superconducting state, accompanied by a small contribution of normal state transport associated with the field dependent pseudogap. Both in the optimal and overdoped regimes, the semiconducting behavior of ρc(H)\rho_c(H) persists even for magnetic fields above the pseudogap closing field HpgH_{pg}. The method suggested by Shibauchi \textit{et al.} (Phys. Rev. Lett. \textbf{86}, 5763, (2001)) for evaluating HpgH_{pg} is unsuccessful for both under- and overdoped Bi2201 samples. Our findings suggest that the normal state pseudogap is not always a precursor of superconductivity.Comment: 11 pages, 8 figures, published in PRB Nov 200

    Efficient tight-binding Monte Carlo structural sampling of complex materials

    Full text link
    While recent work towards the development of tight-binding and ab-initio algorithms has focused on molecular dynamics, Monte Carlo methods can often lead to better results with relatively little effort. We present here a multi-step Monte Carlo algorithm that makes use of the possibility of quickly evaluating local energies. For the thermalization of a 1000-atom configuration of {\it a}-Si, this algorithm gains about an order of magnitude in speed over standard molecular dynamics. The algorithm can easily be ported to a wide range of materials and can be dynamically optimized for a maximum efficiency.Comment: 5 pages including 3 postscript figure
    corecore