9,128 research outputs found

    The bearable lightness of being

    No full text
    How are philosophical questions about what kinds of things there are to be understood and how are they to be answered? This paper defends broadly Fregean answers to these questions. Ontological categories-such as object, property, and relation-are explained in terms of a prior logical categorization of expressions, as singular terms, predicates of varying degree and level, etc. Questions about what kinds of object, property, etc., there are are, on this approach, reduce to questions about truth and logical form: for example, the question whether there are numbers is the question whether there are true atomic statements in which expressions function as singular terms which, if they have reference at all, stand for numbers, and the question whether there are properties of a given type is a question about whether there are meaningful predicates of an appropriate degree and level. This approach is defended against the objection that it must be wrong because makes what there depend on us or our language. Some problems confronting the Fregean approach-including Frege's notorious paradox of the concept horse-are addressed. It is argued that the approach results in a modest and sober deflationary understanding of ontological commitments

    Arginase from kiwifruit: properties and seasonal variation

    Get PDF
    The in vitro activity of arginase (EC 3.5.3.1) was investigated in youngest-mature leaves and roots (1-3 mm diameter) of kiwifruit vines (Actinidia deliciosa var. deliciosa) during an annual growth cycle, and enzyme from root material partially purified. No seasonal trend in the specific activity of arginase was observed in roots. Measurements in leaves, however, rose gradually during early growth and plateaued c. 17 weeks after budbreak. Changes in arginase activity were not correlated with changes in the concentration of arginine (substrate) or glutamine (likely end-product of arginine catabolism) in either tissue during the growth cycle. Purification was by (NH4)2SO4 precipitation and DEAE-cellulose chromatography. The kinetic properties of the enzyme, purified 60-fold over that in crude extracts, indicated a pH optimum of 8.8, and a Km (L-arginine) of 7.85 mM. Partially-purified enzyme was deactivated by dialysis against EDTA, and reactivated in the presence of Mn²⁺, Co²⁺, and Ni²⁺

    History of nutrient inputs to the northeastern United States, 1930–2000

    Get PDF
    Humans have dramatically altered nutrient cycles at local to global scales. We examined changes in anthropogenic nutrient inputs to the northeastern United States (NE) from 1930 to 2000. We created a comprehensive time series of anthropogenic N and P inputs to 437 counties in the NE at 5 year intervals. Inputs included atmospheric N deposition, biological N2 fixation, fertilizer, detergent P, livestock feed, and human food. Exports included exports of feed and food and volatilization of ammonia. N inputs to the NE increased throughout the study period, primarily due to increases in atmospheric deposition and fertilizer. P inputs increased until 1970 and then declined due to decreased fertilizer and detergent inputs. Livestock consistently consumed the majority of nutrient inputs over time and space. The area of crop agriculture declined during the study period but consumed more nutrients as fertilizer. We found that stoichiometry (N:P) of inputs and absolute amounts of N matched nutritional needs (livestock, humans, crops) when atmospheric components (N deposition, N2 fixation) were not included. Differences between N and P led to major changes in N:P stoichiometry over time, consistent with global trends. N:P decreased from 1930 to 1970 due to increased inputs of P, and increased from 1970 to 2000 due to increased N deposition and fertilizer and decreases in P fertilizer and detergent use. We found that nutrient use is a dynamic product of social, economic, political, and environmental interactions. Therefore, future nutrient management must take into account these factors to design successful and effective nutrient reduction measures

    Atom in a coherently controlled squeezed vacuum

    Get PDF
    A broadband squeezed vacuum photon field is characterized by a complex squeezing function. We show that by controlling the wavelength dependence of its phase it is possible to change the dynamics of the atomic polarization interacting with the squeezed vacuum. Such a phase modulation effectively produces a finite range temporal interaction kernel between the two quadratures of the atomic polarization yielding the change in the decay rates as well as the appearance of additional oscillation frequencies. We show that decay rates slower than the spontaneous decay rate can be achieved even for a squeezed bath in the classic regime. For linear and quadratic phase modulations the power spectrum of the scattered light exhibits narrowing of the central peak due to the modified decay rates. For strong phase modulations side lobes appear symmetrically around the central peak reflecting additional oscillation frequencies.Comment: 4 pages, 4 figure

    Varieties of Limited Access Orders: The nexus between politics and economics in hybrid regimes

    Get PDF
    This article advances our understanding of differences in hybrid stability by going beyond existing regime typologies that separate the study of political institutions from the study of economic institutions. It combines the work of Douglass North, John Wallis, and Barry Weingast (NWW) on varieties of social orders with the literature on political and economic regime typologies and dynamics to understand hybrid regimes as Limited Access Orders (LAOs) that differ in the way dominant elites limit access to political and economic resources. Based on a measurement of political and economic access applied to seven post‐Soviet states, the article identifies four types of LAOs. Challenging NWW's claim, it shows that hybrid regimes can combine different degrees of political and economic access to sustain stability. Our typology allows to form theoretical expectations about the kinds of political and/or economic changes that will move different types of LAOs toward more openness or closure

    4He experiments can serve as a database for determining the three-nucleon force

    Full text link
    We report on microscopic calculations for the 4He compound system in the framework of the resonating group model employing realistic nucleon-nucleon and three nucleon forces. The resulting scattering phase shifts are compared to those of a comprehensive R-matrix analysis of all data in this system, which are available in numerical form. The agreement between calculation and analysis is in most cases very good. Adding three-nucleon forces yields in many cases large effects. For a few cases the new agreement is striking. We relate some differencies between calculation and analysis to specific data and discuss neccessary experiments to clarify the situation. From the results we conclude that the data of the 4He system might be well suited to determine the structure of the three-nucleon force.Comment: title changed,note added, format of figures changed, appearance of figures in black-and-white changed, Phys. Rev. C accepte

    Monotonic properties of the shift and penetration factors

    Full text link
    We study derivatives of the shift and penetration factors of collision theory with respect to energy, angular momentum, and charge. Definitive results for the signs of these derivatives are found for the repulsive Coulomb case. In particular, we find that the derivative of the shift factor with respect to energy is positive for the repulsive Coulomb case, a long anticipated but heretofore unproven result. These results are closely connected to the properties of the sum of squares of the regular and irregular Coulomb functions; we also present investigations of this quantity.Comment: 13 pages, 1 figur

    Active Vibration Control of a Doubly Curved Composite Shell Stiffened by Beams Bonded with Discrete Macro Fibre Composite Sensor/Actuator Pairs

    Get PDF
    Doubly curved stiffened shells are essential parts of many large-scale engineering structures, such as aerospace, automotive and marine structures. Optimization of active vibration reduction has not been properly investigated for this important group of structures. This study develops a placement methodology for such structures under motion base and external force excitations to optimize the locations of discrete piezoelectric sensor/actuator pairs and feedback gain using genetic algorithms for active vibration control. In this study, fitness and objective functions are proposed based on the maximization of sensor output voltage to optimize the locations of discrete sensors collected with actuators to attenuate several vibrations modes. The optimal control feedback gain is determined then based on the minimization of the linear quadratic index. A doubly curved composite shell stiffened by beams and bonded with discrete piezoelectric sensor/actuator pairs is modeled in this paper by first-order shear deformation theory using finite element method and Hamilton’s principle. The proposed methodology is implemented first to investigate a cantilever composite shell to optimize four sensor/actuator pairs to attenuate the first six modes of vibration. The placement methodology is applied next to study a complex stiffened composite shell to optimize four sensor/actuator pairs to test the methodology effectiveness. The results of optimal sensor/actuator distribution are validated by convergence study in genetic algorithm program, ANSYS package and vibration reduction using optimal linear quadratic control scheme

    New methodology for optimal placement of piezoelectric sensor/actuator pairs for active vibration control of flexible structures

    Get PDF
    This paper describes a computationally efficient method to determine optimal locations of sensor/actuator (s/a) pairs for active vibration reduction of a flexible structure. Previous studies have tackled this problem using heuristic optimization techniques achieved with numerous combinations of s/a locations and converging on a suboptimal or optimal solution after multithousands of generations. This is computationally expensive and directly proportional to the number of sensors, actuators, possible locations on structures, and the number of modes required to be suppressed (control variables). The current work takes a simplified approach of modeling a structure with sensors at all locations, subjecting it to external excitation force or structure base excitation in various modes of interest and noting the locations of n sensors giving the largest average percentage sensor effectiveness. The percentage sensor effectiveness is measured by dividing all sensor output voltage over the maximum for each mode using time and frequency domain analysis. The methodology was implemented for dynamically symmetric and asymmetric structures under external force and structure base excitations to find the optimal distribution based on time and frequency responses analysis. It was found that the optimized sensor locations agreed well with the published results for a cantilever plate, while with very much reduced computational effort and higher effectiveness. Furthermore, it was found that collocated s/a pairs placed in these locations offered very effective active vibration reduction for the structure considered
    corecore