1,419 research outputs found

    Convection and Shear Flow in TC Development and Intensification

    Get PDF

    Multiple abiotic and biotic drivers of long-term wood decomposition within and among species in the semi-arid inland dunes:A dual role for stem diameter

    Get PDF
    Litter decomposition in sunny, semi-arid and arid ecosystems is controlled by both biotic factors including litter traits and abiotic factors including UV light, but for wood decomposition it still remains uncertain which of these environmental factors are the predominant controls among different woody species. In these dry ecosystems, it is likely that the stem diameter and spatial position of the dead wood are of particular importance especially where wood can be buried versus exposed due to substrate displacement by wind. Here we focus on the fact that stem diameter can affect decomposition rates both via the relative surface exposure to sunlight or soil and via higher resource quality of narrower stems to decomposers. In a field manipulation experiment, we investigated the relative importance of litter position (sand burial vs. surface vs. suspended above the surface), UV radiation (block versus pass) and stem diameter class (<2, 2–4, 4–8, 8–13 and 13–20 mm) on the mass loss of woody litters of four shrub species in an inland dune ecosystem in northern China. We found that after 34 months of in situ incubation, the mass loss of buried woody litters was three times faster than those of suspended and surface woody litters (53.5 ± 2.7%, 17.0 ± 1.0% and 14.4 ± 1.2%, respectively). In surface and suspended positions, litter decomposition rates were almost equally low and most mass loss was during the first 2 years, when bark was still attached and UV radiation had no significant effect on woody litter mass loss. These findings suggest that sand burial is the main environmental driver of wood decomposition via its control on microbial activity. Moreover, wood N and diameter class were the predominant factors driving woody litter decomposition. A key finding was that wider stems had slower litter decomposition rates not only directly (presumably via greater relative surface exposure) but also indirectly via their higher wood dry matter content or lower wood N; these effects were modulated by litter position. Our findings highlight a dual role of stem diameter on wood decomposition, that is, via relative surface exposure and via wood traits. The accuracy and confidence of global carbon cycling models would be improved by incorporating the different effects of stem diameter on woody litter decomposition and below-ground wood decomposition processes in drylands

    Coherent resonant tunneling in ac fields

    Full text link
    We have analyzed the tunneling transmission probability and electronic current density through resonant heterostructures in the presence of an external electromagnetic field. In this work, we compare two different models for a double barrier : In the first case the effect of the external field is taken into account by spatially dependent AC voltages and in the second one the electromagnetic field is described in terms of a photon field that irradiates homogeneously the whole sample. While in the first description the tunneling takes place mainly through photo sidebands in the case of homogeneous illumination the main effective tunneling channels correspond to the coupling between different electronic states due to photon absorption and emission. The difference of tunneling mechanisms between these configurations is strongly reflected in the transmission and current density which present very different features in both cases. In order to analyze these effects we have obtained, within the Transfer Hamiltonian framework, a general expression for the transition probability for coherent resonant tunneling in terms of the Green's function of the system.Comment: 16 pages,Figures available upon request,to appear in Phys.Rev B (15 April 1996

    Shot noise in resonant tunneling through a zero-dimensional state with a complex energy spectrum

    Get PDF
    We investigate the noise properties of a GaAs/AlGaAs resonant tunneling structure at bias voltages where the current characteristic is determined by single electron tunneling. We discuss the suppression of the shot noise in the framework of a coupled two-state system. For large bias voltages we observed super-Poissonian shot noise up to values of the Fano factor α≈10\alpha \approx 10.Comment: 4 pages, 4 figures, accepted for Phys. Rev.

    Functional Integral Bosonization for Impurity in Luttinger Liquid

    Get PDF
    We use a functional integral formalism developed earlier for the pure Luttinger liquid (LL) to find an exact representation for the electron Green function of the LL in the presence of a single backscattering impurity. This allows us to reproduce results (well known from the bosonization techniques) for the suppression of the electron local density of states (LDoS) at the position of the impurity and for the Friedel oscillations at finite temperature. In addition, we have extracted from the exact representation an analytic dependence of LDoS on the distance from the impurity and shown how it crosses over to that for the pure LL.Comment: 7 pages, 1 LaTeX produced figur

    Application of simulation technique on debris flow hazard zone delineation: a case study in the Daniao tribe, Eastern Taiwan

    Get PDF
    Typhoon Morakot struck Taiwan in August 2009 and induced considerable disasters, including large-scale landslides and debris flows. One of these debris flows was experienced by the Daniao tribe in Taitung, Eastern Taiwan. The volume was in excess of 500 000 m(3), which was substantially larger than the original design mitigation capacity. This study considered large-scale debris flow simulations in various volumes at the same area by using the DEBRIS-2D numerical program. The program uses the generalized Julien and Lan (1991) rheological model to simulate debris flows. In this paper, the sensitivity factor considered on the debris flow spreading is the amount of the debris flow initial volume. These simulated results in various amounts of debris flow initial volume demonstrated that maximal depths of debris flows were almost deposited in the same area, and also revealed that a 20% variation in estimating the amount of total volume at this particular site results in a 2.75% variation on the final front position. Because of the limited watershed terrain, the hazard zones of debris flows were not expanded. Therefore, the amount of the debris flow initial volume was not sensitive

    Transverse Fresnel-Fizeau drag effects in strongly dispersive media

    Full text link
    A light beam normally incident upon an uniformly moving dielectric medium is in general subject to bendings due to a transverse Fresnel-Fizeau light drag effect. In conventional dielectrics, the magnitude of this bending effect is very small and hard to detect. Yet, it can be dramatically enhanced in strongly dispersive media where slow group velocities in the m/s range have been recently observed taking advantage of the electromagnetically induced transparency (EIT) effect. In addition to the usual downstream drag that takes place for positive group velocities, we predict a significant anomalous upstream drag to occur for small and negative group velocities. Furthermore, for sufficiently fast speeds of the medium, higher order dispersion terms are found to play an important role and to be responsible for peculiar effects such as light propagation along curved paths and the restoration of the spatial coherence of an incident noisy beam. The physics underlying this new class of slow-light effects is thoroughly discussed
    • …