1,929 research outputs found

    Microstructure of nanocrystalline diamond powders studied by powder diffractometry

    Get PDF
    High resolution x-ray diffraction peaks of diamond nanosize powders of nominal sizes ranging from 5 to 250 nm were analyzed and provided information on grain structure, average size of crystallites, and concentration of dislocations. Selected samples were heat treated at 1670 K at pressures 2.0 and 5.5 GPa or had surface modified by outgassing, heat treatment at vacuum conditions, and by controlled adsorption of gases. The apparent lattice parameter method was applied to characterize the structure of a shell-core model of nanosize particles. The multiple whole profile fitting provided information on crystallite sizes and density of dislocations. Population of dislocations increased with applied pressure, while strain and interplanar distances in the surface layers decreased. Adsorption of foreign gases on the grain surface modified the structure of the surface layers but did not affect dislocations near the center of the grains

    Phenomenology of Lepton Masses and Mixing with Discrete Flavor Symmetries

    Full text link
    The observed pattern of fermion masses and mixing is an outstanding puzzle in particle physics, generally known as the flavor problem. Over the years, guided by precision neutrino oscillation data, discrete flavor symmetries have often been used to explain the neutrino mixing parameters, which look very different from the quark sector. In this review, we discuss the application of non-Abelian finite groups to the theory of neutrino masses and mixing in the light of current and future neutrino oscillation data. We start with an overview of the neutrino mixing parameters, comparing different global fit results and limits on normal and inverted neutrino mass ordering schemes. Then, we discuss a general framework for implementing discrete family symmetries to explain neutrino masses and mixing. We discuss CP violation effects, giving an update of CP predictions for trimaximal models with nonzero reactor mixing angle and models with partial μτ\mu-\tau reflection symmetry, and constraining models with neutrino mass sum rules. The connection between texture zeroes and discrete symmetries is also discussed. We summarize viable higher-order groups, which can explain the observed pattern of lepton mixing where the non-zero θ13\theta_{13} plays an important role. We also review the prospects of embedding finite discrete symmetries in the Grand Unified Theories and with extended Higgs fields. Models based on modular symmetry are also briefly discussed. A major part of the review is dedicated to the phenomenology of flavor symmetries and possible signatures in the current and future experiments at the intensity, energy, and cosmic frontiers. In this context, we discuss flavor symmetry implications for neutrinoless double beta decay, collider signals, leptogenesis, dark matter, as well as gravitational waves.Comment: 55 pages + references, invited review submitted to Progress in Particle and Nuclear Physic

    Compression and thermal expansion of nanocrystalline TiN

    Get PDF
    Abstract. TiN nanopowders synthesized by the application of an anaerobic "imide" route and aerosol synthesis with 5 and 26 nm average size were examined by in situ diffraction at high pressure up to 6 GPa and high temperature up to 800 o C. Overall compressibilities and thermal expansion coefficients were determined for the examined pressure and temperature intervals. Nanocrystals of TiN show core-shell type structure where elastic properties of interior and surface shell are different; surface is softer and shows larger thermal expansion than crystalline TiN. Core-shell model was confirmed by analysis of large Q powder diffraction at room temperature with application of alp-Q and PDF analysis

    Thyrotropin-releasing hormone (TRH) promotes wound re-epithelialisation in frog and human skin

    Get PDF
    There remains a critical need for new therapeutics that promote wound healing in patients suffering from chronic skin wounds. This is, in part, due to a shortage of simple, physiologically and clinically relevant test systems for investigating candidate agents. The skin of amphibians possesses a remarkable regenerative capacity, which remains insufficiently explored for clinical purposes. Combining comparative biology with a translational medicine approach, we report the development and application of a simple ex vivo frog (Xenopus tropicalis) skin organ culture system that permits exploration of the effects of amphibian skin-derived agents on re-epithelialisation in both frog and human skin. Using this amphibian model, we identify thyrotropin-releasing hormone (TRH) as a novel stimulant of epidermal regeneration. Moving to a complementary human ex vivo wounded skin assay, we demonstrate that the effects of TRH are conserved across the amphibian-mammalian divide: TRH stimulates wound closure and formation of neo-epidermis in organ-cultured human skin, accompanied by increased keratinocyte proliferation and wound healing-associated differentiation (cytokeratin 6 expression). Thus, TRH represents a novel, clinically relevant neuroendocrine wound repair promoter that deserves further exploration. These complementary frog and human skin ex vivo assays encourage a comparative biology approach in future wound healing research so as to facilitate the rapid identification and preclinical testing of novel, evolutionarily conserved, and clinically relevant wound healing promoters

    LHC Optics Measurement with Proton Tracks Detected by the Roman Pots of the TOTEM Experiment

    Full text link
    Precise knowledge of the beam optics at the LHC is crucial to fulfil the physics goals of the TOTEM experiment, where the kinematics of the scattered protons is reconstructed with the near-beam telescopes -- so-called Roman Pots (RP). Before being detected, the protons' trajectories are influenced by the magnetic fields of the accelerator lattice. Thus precise understanding of the proton transport is of key importance for the experiment. A novel method of optics evaluation is proposed which exploits kinematical distributions of elastically scattered protons observed in the RPs. Theoretical predictions, as well as Monte Carlo studies, show that the residual uncertainty of this optics estimation method is smaller than 0.25 percent.Comment: 20 pages, 11 figures, 5 figures, to be submitted to New J. Phy

    Double diffractive cross-section measurement in the forward region at LHC

    Full text link
    The first double diffractive cross-section measurement in the very forward region has been carried out by the TOTEM experiment at the LHC with center-of-mass energy of sqrt(s)=7 TeV. By utilizing the very forward TOTEM tracking detectors T1 and T2, which extend up to |eta|=6.5, a clean sample of double diffractive pp events was extracted. From these events, we measured the cross-section sigma_DD =(116 +- 25) mub for events where both diffractive systems have 4.7 <|eta|_min < 6.5 .Comment: 5 pages, 1 figure, submitted for publicatio

    Performance of the TOTEM Detectors at the LHC

    Get PDF
    The TOTEM Experiment is designed to measure the total proton-proton cross-section with the luminosity-independent method and to study elastic and diffractive pp scattering at the LHC. To achieve optimum forward coverage for charged particles emitted by the pp collisions in the interaction point IP5, two tracking telescopes, T1 and T2, are installed on each side of the IP in the pseudorapidity region 3.1 < = |eta | < = 6.5, and special movable beam-pipe insertions - called Roman Pots (RP) - are placed at distances of +- 147 m and +- 220 m from IP5. This article describes in detail the working of the TOTEM detector to produce physics results in the first three years of operation and data taking at the LHC.Comment: 40 pages, 31 figures, submitted to Int. J. Mod. Phys.

    First Results from the TOTEM Experiment

    Full text link
    The first physics results from the TOTEM experiment are here reported, concerning the measurements of the total, differential elastic, elastic and inelastic pp cross-section at the LHC energy of s\sqrt{s} = 7 TeV, obtained using the luminosity measurement from CMS. A preliminary measurement of the forward charged particle η\eta distribution is also shown.Comment: Conference Proceeding. MPI@LHC 2010: 2nd International Workshop on Multiple Partonic Interactions at the LHC. Glasgow (UK), 29th of November to the 3rd of December 201

    Elastic Scattering and Total Cross-Section in p+p reactions measured by the LHC Experiment TOTEM at sqrt(s) = 7 TeV

    Full text link
    Proton-proton elastic scattering has been measured by the TOTEM experiment at the CERN Large Hadron Collider at s=7\sqrt{s} = 7 TeV in special runs with the Roman Pot detectors placed as close to the outgoing beam as seven times the transverse beam size. The differential cross-section measurements are reported in the |t|-range of 0.36 to 2.5 GeV^2. Extending the range of data to low t values from 0.02 to 0.33 GeV^2,and utilizing the luminosity measurements of CMS, the total proton-proton cross section at sqrt(s) = 7 TeV is measured to be (98.3 +- 0.2(stat) +- 2.8(syst)) mb.Comment: Proceedings of the XLI International Symposium on Multiparticle Dynamics. Accepted for publication in Prog. Theor. Phy

    Proton-proton elastic scattering at the LHC energy of {\surd} = 7 TeV

    Full text link
    Proton-proton elastic scattering has been measured by the TOTEM experiment at the CERN Large Hadron Collider at {\surd}s = 7 TeV in dedicated runs with the Roman Pot detectors placed as close as seven times the transverse beam size (sbeam) from the outgoing beams. After careful study of the accelerator optics and the detector alignment, |t|, the square of four-momentum transferred in the elastic scattering process, has been determined with an uncertainty of d t = 0.1GeV p|t|. In this letter, first results of the differential cross section are presented covering a |t|-range from 0.36 to 2.5GeV2. The differential cross-section in the range 0.36 < |t| < 0.47 GeV2 is described by an exponential with a slope parameter B = (23.6{\pm}0.5stat {\pm}0.4syst)GeV-2, followed by a significant diffractive minimum at |t| = (0.53{\pm}0.01stat{\pm}0.01syst)GeV2. For |t|-values larger than ~ 1.5GeV2, the cross-section exhibits a power law behaviour with an exponent of -7.8_\pm} 0.3stat{\pm}0.1syst. When compared to predictions based on the different available models, the data show a strong discriminative power despite the small t-range covered.Comment: 12pages, 5 figures, CERN preprin
    corecore