1,327 research outputs found

    On the contribution of density perturbations and gravitational waves to the lower order multipoles of the Cosmic Microwave Background Radiation

    Get PDF
    The important studies of Peebles, and Bond and Efstathiou have led to the formula C_l = const/[l(l +1)] aimed at describing the lower order multipoles of the CMBR temperature variations caused by density perturbations with the flat spectrum. Clearly, this formula requires amendments, as it predicts an infinitely large monopole C_0, and a dipole moment C_1 only 6/2 times larger than the quadrupole C_2, both predictions in conflict with observations. We restore the terms omitted in the course of the derivation of this formula, and arrive at a new expression. According to the corrected formula, the monopole moment is finite and small, while the dipole moment is sensitive to short-wavelength perturbations, and numerically much larger than the quadrupole, as one would expect on physical grounds. At the same time, the function l(l +1)C_l deviates from a horizontal line and grows with l, for l \geq 2. We show that the inclusion of the modulating (transfer) function terminates the growth and forms the first peak, recently observed. We fit the theoretical curves to the position and height of the first peak, as well as to the observed dipole, varying three parameters: red-shift at decoupling, red-shift at matter-radiation equality, and slope of the primordial spectrum. It appears that there is always a deficit, as compared with the COBE observations, at small multipoles, l \sim 10. We demonstrate that a reasonable and theoretically expected amount of gravitational waves bridges this gap at small multipoles, leaving the other fits as good as before. We show that the observationally acceptable models permit somewhat `blue' primordial spectra. This allows one to avoid the infra-red divergence of cosmological perturbations, which is otherwise present.Comment: prints to 25 pages including 14 figures, several additional sentences on interpretation, new references, to appear in Int. Journ. Mod. Physics

    Relic gravitational waves: latest revisions and preparations for new data

    Full text link
    The forthcoming release of data from the Planck mission, and possibly from the next round of Wilkinson Microwave Anisotropy Probe (WMAP) observations, make it necessary to revise the evaluations of relic gravitational waves in the existing data and, at the same time, to refine the assumptions and data analysis techniques in preparation for the arrival of new data. We reconsider with the help of the commonly used CosmoMC numerical package the previously found indications of relic gravitational waves in the 7-year (WMAP7) data. The CosmoMC approach reduces the confidence of these indications from approximately 2σ\sigma level to approximately 1σ\sigma level, but the indications do not disappear altogether. We critically analyze the assumptions that are currently used in the Cosmic Microwave Background (CMB) data analyzes and outline the strategy that should help avoid the oversight of relic gravitational waves in the future CMB data. In particular, it is important to keep away from the unwarranted assumptions about density perturbations. The prospects of confident detection of relic gravitational waves by the Planck satellite have worsened, but they are still good. It appears that more effort will be required in order to mitigate the foreground contamination.Comment: 11 pages, 4 figures, 3 tables; v.3: improvements, published versio

    Relic gravitational waves in the light of 7-year Wilkinson Microwave Anisotropy Probe data and improved prospects for the Planck mission

    Full text link
    The new release of data from Wilkinson Microwave Anisotropy Probe improves the observational status of relic gravitational waves. The 7-year results enhance the indications of relic gravitational waves in the existing data and change to the better the prospects of confident detection of relic gravitational waves by the currently operating Planck satellite. We apply to WMAP7 data the same methods of analysis that we used earlier [W. Zhao, D. Baskaran, and L.P. Grishchuk, Phys. Rev. D 80, 083005 (2009)] with WMAP5 data. We also revised by the same methods our previous analysis of WMAP3 data. It follows from the examination of consecutive WMAP data releases that the maximum likelihood value of the quadrupole ratio RR, which characterizes the amount of relic gravitational waves, increases up to R=0.264R=0.264, and the interval separating this value from the point R=0R=0 (the hypothesis of no gravitational waves) increases up to a 2σ2\sigma level. The primordial spectra of density perturbations and gravitational waves remain blue in the relevant interval of wavelengths, but the spectral indices increase up to ns=1.111n_s =1.111 and nt=0.111n_t=0.111. Assuming that the maximum likelihood estimates of the perturbation parameters that we found from WMAP7 data are the true values of the parameters, we find that the signal-to-noise ratio S/NS/N for the detection of relic gravitational waves by the Planck experiment increases up to S/N=4.04S/N=4.04, even under pessimistic assumptions with regard to residual foreground contamination and instrumental noises. We comment on theoretical frameworks that, in the case of success, will be accepted or decisively rejected by the Planck observations.Comment: 27 pages, 12 (colour) figures. Published in Phys. Rev. D. V.3: modifications made to reflect the published versio

    Quantum Effects In Cosmology

    Get PDF
    Contents: Introduction. The Present State of the Universe. What Can We Expect From a Complete Cosmological Theory? An Overview of Quantum Effects in Cosmology. Parametric (Superadiabatic) Amplification of Classical Waves. Graviton Creation in the Inflationary Universe. Quantum States of a Harmonic Oscillator. Squeezed Quantum States of Relic Gravitons and Primordial Density Perturbations. Quantum Cosmology, Minisuperspace Models and Inflation. From the Space of Classical Solutions to the Space of Wave Functions. On the Probability of Quantum Tunneling From "Nothing". Duration of InflationComment: (43 pages, to be published in "The Origin of Structure in the Universe", ed. P.Nardone

    Constraint on the early Universe by relic gravitational waves: From pulsar timing observations

    Full text link
    Recent pulsar timing observations by the Parkers Pulsar Timing Array and European Pulsar Timing Array teams obtained the constraint on the relic gravitational waves at the frequency f∗=1/yrf_*=1/{\rm yr}, which provides the opportunity to constrain H∗H_*, the Hubble parameter when these waves crossed the horizon during inflation. In this paper, we investigate this constraint by considering the general scenario for the early Universe: we assume that the effective (average) equation-of-state ww before the big bang nucleosynthesis stage is a free parameter. In the standard hot big-bang scenario with w=1/3w=1/3, we find that the current PPTA result follows a bound H_*\leq 1.15\times10^{-1}\mpl, and the EPTA result follows H_*\leq 6.92\times10^{-2}\mpl. We also find that these bounds become much tighter in the nonstandard scenarios with w>1/3w>1/3. When w=1w=1, the bounds become H_*\leq5.89\times10^{-3}\mpl for the current PPTA and H_*\leq3.39\times10^{-3}\mpl for the current EPTA. In contrast, in the nonstandard scenario with w=0w=0, the bound becomes H_*\leq7.76\mpl for the current PPTA.Comment: 8 pages, 3 figures, 1 table, PRD in pres
    • …
    corecore