199 research outputs found

    Learning the Preferences of Ignorant, Inconsistent Agents

    Full text link
    An important use of machine learning is to learn what people value. What posts or photos should a user be shown? Which jobs or activities would a person find rewarding? In each case, observations of people's past choices can inform our inferences about their likes and preferences. If we assume that choices are approximately optimal according to some utility function, we can treat preference inference as Bayesian inverse planning. That is, given a prior on utility functions and some observed choices, we invert an optimal decision-making process to infer a posterior distribution on utility functions. However, people often deviate from approximate optimality. They have false beliefs, their planning is sub-optimal, and their choices may be temporally inconsistent due to hyperbolic discounting and other biases. We demonstrate how to incorporate these deviations into algorithms for preference inference by constructing generative models of planning for agents who are subject to false beliefs and time inconsistency. We explore the inferences these models make about preferences, beliefs, and biases. We present a behavioral experiment in which human subjects perform preference inference given the same observations of choices as our model. Results show that human subjects (like our model) explain choices in terms of systematic deviations from optimal behavior and suggest that they take such deviations into account when inferring preferences.Comment: AAAI 201

    Why think step-by-step? Reasoning emerges from the locality of experience

    Full text link
    Humans have a powerful and mysterious capacity to reason. By working through a series of purely mental steps, we can make inferences we would not be capable of making directly -- despite that fact that we get no additional data from the world. Similarly, large language models can perform better at complex tasks through chain-of-thought reasoning, where they generate intermediate steps before answering a question. We use language models to investigate the questions of when and why reasoning is helpful, testing the hypothesis that reasoning is effective when training data consisting of local clusters of variables that influence each other strongly. These training conditions enable the chaining of accurate local inferences in order to estimate relationships between variables that were not seen together in training. We train an autoregressive transformer on samples from joint distributions defined by Bayes nets, but only include a subset of all the variables in each sample. We compare language models' ability to match conditional probabilities both with and without intermediate reasoning steps, finding that intermediate steps help only when the training data is locally structured with respect to dependencies between variables. Furthermore, intermediate variables need to be relevant to the relationship between observed information and target inferences. Our results illustrate how the statistical structure of training data drives the effectiveness of reasoning step by step.Comment: 8 pages, 3 figure
    corecore