653 research outputs found

    Planning Future Strategies for Domestic and International NeuroAIDS Research, July 24–25, 2008

    Get PDF
    The National Institute of Mental Health in cooperation with the National Institute on Drug Abuse and the National Institute of Neurological Disorders and Stroke organized a meeting on July 24–25, 2008 to develop novel research directions for neuroAIDS research. The deliberations of this meeting are outlined in this brief report. Several critical research areas in neuroAIDS were identified as areas of emphasis. Opportunities for collaborations between large NIH-funded projects were also discussed

    Chemokines in cerebrospinal fluid correlate with cerebral metabolite patterns in HIV-infected individuals

    Get PDF
    Chemokines influence HIV neuropathogenesis by affecting the HIV life cycle, trafficking of macrophages into the nervous system, glial activation, and neuronal signaling and repair processes; however, knowledge of their relationship to in vivo measures of cerebral injury is limited. The primary objective of this study was to determine the relationship between a panel of chemokines in cerebrospinal fluid (CSF) and cerebral metabolites measured by proton magnetic resonance spectroscopy (MRS) in a cohort of HIV-infected individuals. One hundred seventy-one stored CSF specimens were assayed from HIV-infected individuals who were enrolled in two ACTG studies that evaluated the relationship between neuropsychological performance and cerebral metabolites. Concentrations of six chemokines (fractalkine, IL-8, IP-10, MCP-1, MIP-1β, and SDF-1) were measured and compared with cerebral metabolites individually and as composite neuronal, basal ganglia, and inflammatory patterns. IP-10 and MCP-1 were the chemokines most strongly associated with individual cerebral metabolites. Specifically, (1) higher IP-10 levels correlated with lower N-acetyl aspartate (NAA)/creatine (Cr) ratios in the frontal white matter and higher MI/Cr ratios in all three brain regions considered and (2) higher MCP-1 levels correlated with lower NAA/Cr ratios in frontal white matter and the parietal cortex. IP-10, MCP-1, and IL-8 had the strongest associations with patterns of cerebral metabolites. In particular, higher levels of IP-10 correlated with lower neuronal pattern scores and higher basal ganglia and inflammatory pattern scores, the same pattern which has been associated with HIV-associated neurocognitive disorders (HAND). Subgroup analysis indicated that the effects of IP-10 and IL-8 were influenced by effective antiretroviral therapy and that memantine treatment may mitigate the neuronal effects of IP-10. This study supports the role of chemokines in HAND and the validity of MRS as an assessment tool. In particular, the findings identify relationships between the immune response—particularly an interferon-inducible chemokine, IP-10—and cerebral metabolites and suggest that antiretroviral therapy and memantine modify the impact of the immune response on neurons

    Environmental changes in oxygen tension reveal ROS-dependent neurogenesis and regeneration in the adult newt brain

    Get PDF
    Acknowledgements: We thank A Elewa, N Dantuma, C Sjögren for many helpful comments on the manuscript, and H Wang and M Kirkham for advice. This work was supported by grants from the European Research Council, Swedish Research Council, Swedish Cancer Society, AFA Insurances to AS. YC´s laboratory is supported by research grants from the Swedish Research Council, the Swedish Cancer Foundation, the Karolinska Institute Foundation, the Karolinska Institute distinguished professor award, the Torsten Soderbergs foundation, the NOVO Nordisk Foundation, the Advanced grant from the NOVO Nordisk foundation, and the Alice Wallenberg foundation This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.Peer reviewedPublisher PD

    Methylthioadenosine reverses brain autoimmune disease

    Get PDF
    OBJECTIVE: To assess the immunomodulatory activity of methylthioadenosine (MTA) in rodent experimental autoimmune encephalomyelitis (EAE) and in patients with multiple sclerosis. METHODS: We studied the effect of intraperitoneal MTA in the acute and chronic EAE model by quantifying clinical and histological scores and by performing immunohistochemistry stains of the brain. We studied the immunomodulatory effect of MTA in lymphocytes from EAE animals and in peripheral blood mononuclear cells from healthy control subjects and multiple sclerosis patients by assessing cell proliferation and cytokine gene expression, by real-time polymerase chain reaction, and by nuclear factor-kappaB modulation by Western blot. RESULTS: We found that MTA prevents acute EAE and, more importantly, reverses chronic-relapsing EAE. MTA treatment markedly inhibited brain inflammation and reduced brain damage. Administration of MTA suppressed T-cell activation in vivo and in vitro, likely through a blockade in T-cell signaling resulting in the prevention of inhibitor of kappa B (IkappaB-alpha) degradation and in the impaired activation transcription factor nuclear factor-kappaB. Indeed, MTA suppressed the production of proinflammatory genes and cytokines (interferon-gamma, tumor necrosis factor-alpha, and inducible nitric oxide synthase) and increased the production of antiinflammatory cytokines (interleukin-10). INTERPRETATION: MTA has a remarkable immunomodulatory activity and may be beneficial for multiple sclerosis and other autoimmune diseases

    tRNAs Promote Nuclear Import of HIV-1 Intracellular Reverse Transcription Complexes

    Get PDF
    Infection of non-dividing cells is a biological property of HIV-1 crucial for virus transmission and AIDS pathogenesis. This property depends on nuclear import of the intracellular reverse transcription and pre-integration complexes (RTCs/PICs). To identify cellular factors involved in nuclear import of HIV-1 RTCs, cytosolic extracts were fractionated by chromatography and import activity examined by the nuclear import assay. A near-homogeneous fraction was obtained, which was active in inducing nuclear import of purified and labeled RTCs. The active fraction contained tRNAs, mostly with defective 3′ CCA ends. Such tRNAs promoted HIV-1 RTC nuclear import when synthesized in vitro. Active tRNAs were incorporated into and recovered from virus particles. Mutational analyses indicated that the anticodon loop mediated binding to the viral complex whereas the T-arm may interact with cellular factors involved in nuclear import. These tRNA species efficiently accumulated into the nucleus on their own in a energy- and temperature-dependent way. An HIV-1 mutant containing MLV gag did not incorporate tRNA species capable of inducing HIV-1 RTC nuclear import and failed to infect cell cycle–arrested cells. Here we provide evidence that at least some tRNA species can be imported into the nucleus of human cells and promote HIV-1 nuclear import

    Preliminary clinical trial of gadodiamide injection: A new nonionic gadolinium contrast agent for MR imaging

    Full text link
    The safety and efficacy of a newly developed intravenous formulation of the nonionic contrast agent gadolinium diethylenetriaminepentaacetic acid- bis (methylamide), formulated as gadodia-mide injection, was investigated. In 30 patients who underwent spin-echo magnetic resonance (MR) imaging before and after contrast agent enhancement, the enhanced images had characteristics judged similar to those of images enhanced by means of available gadolinium compounds. In 15 patients, contrast agent administration was of major diagnostic help, either revealing lesions not apparent without enhancement or providing important lesion characterization. In 12 patients, the lack of abnormal enhancement patterns was important in excluding the presence of disease. In three patients, the contrast agent did not provide information additional to that obtained with the unenhanced T1- and T2-weighted images. No clinically significant changes were observed in vital signs, neurologic status, or laboratory results. The authors conclude that, in this limited series, gadodiamide injection proved to be a safe and useful MR imaging contrast agent for evaluation of the central nervous system and surrounding structures.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/38569/1/1880010107_ftp.pd

    Cerebrospinal Fluid Viral Load and Intrathecal Immune Activation in Individuals Infected with Different HIV-1 Genetic Subtypes

    Get PDF
    Background: HIV-1 exhibits a high degree of genetic diversity and is presently divided into 3 distinct HIV-1 genetic groups designated major (M), non-M/non-O (N) and outlier (O). Group M, which currently comprises 9 subtypes (A-D, F-H, J and K), at least 34 circulating recombinant forms (CRFs) and several unique recombinant forms (URFs) is responsible for most of the HIV-1 epidemic. Most of the current knowledge of HIV-1 central nervous system (CNS) infection is based on subtype B. However, subtypes other than subtype B account for the majority of global HIV-1 infections. Therefore, we investigated whether subtypes have any influence on cerebrospinal fluid (CSF) markers of HIV-1 CNS infection. Methodology/Principal Findings: CSF HIV-1 RNA, CSF neopterin and CSF white blood cell (WBC) count were measured in patients infected with different HIV-1 subtypes. Using multivariate regression analysis, no differences in the CSF WBC count, neopterin and viral load were found between various HIV-1 subtypes

    Bunyavirus requirement for endosomal K+ reveals new roles of cellular ion channels during infection

    Get PDF
    In order to multiply and cause disease a virus must transport its genome from outside the cell into the cytosol, most commonly achieved through the endocytic network. Endosomes transport virus particles to specific cellular destinations and viruses exploit the changing environment of maturing endocytic vesicles as triggers to mediate genome release. Previously we demonstrated that several bunyaviruses, which comprise the largest family of negative sense RNA viruses, require the activity of cellular potassium (K+) channels to cause productive infection. Specifically, we demonstrated a surprising role for K+ channels during virus endosomal trafficking. In this study, we have used the prototype bunyavirus, Bunyamwera virus (BUNV), as a tool to understand why K+ channels are required for progression of these viruses through the endocytic network. We report three major findings: First, the production of a dual fluorescently labelled bunyavirus to visualize virus trafficking in live cells. Second, we show that BUNV traffics through endosomes containing high [K+] and that these K+ ions influence the infectivity of virions. Third, we show that K+ channel inhibition can alter the distribution of K+ across the endosomal system and arrest virus trafficking in endosomes. These data suggest high endosomal [K+] is a critical cue that is required for virus infection, and is controlled by cellular K+ channels resident within the endosome network. This highlights cellular K+ channels as druggable targets to impede virus entry, infection and disease
    corecore