34,334 research outputs found

    Are All Particles Identical?

    Full text link
    We consider the possibility that all particles in the world are fundamentally identical, i.e., belong to the same species. Different masses, charges, spins, flavors, or colors then merely correspond to different quantum states of the same particle, just as spin-up and spin-down do. The implications of this viewpoint can be best appreciated within Bohmian mechanics, a precise formulation of quantum mechanics with particle trajectories. The implementation of this viewpoint in such a theory leads to trajectories different from those of the usual formulation, and thus to a version of Bohmian mechanics that is inequivalent to, though arguably empirically indistinguishable from, the usual one. The mathematical core of this viewpoint is however rather independent of the detailed dynamical scheme Bohmian mechanics provides, and it amounts to the assertion that the configuration space for N particles, even N ``distinguishable particles,'' is the set of all N-point subsets of physical 3-space.Comment: 12 pages LaTeX, no figure

    Seven Steps Towards the Classical World

    Get PDF
    Classical physics is about real objects, like apples falling from trees, whose motion is governed by Newtonian laws. In standard Quantum Mechanics only the wave function or the results of measurements exist, and to answer the question of how the classical world can be part of the quantum world is a rather formidable task. However, this is not the case for Bohmian mechanics, which, like classical mechanics, is a theory about real objects. In Bohmian terms, the problem of the classical limit becomes very simple: when do the Bohmian trajectories look Newtonian?Comment: 16 pages, LaTeX, uses latexsy

    Opposite Arrows of Time Can Reconcile Relativity and Nonlocality

    Full text link
    We present a quantum model for the motion of N point particles, implying nonlocal (i.e., superluminal) influences of external fields on the trajectories, that is nonetheless fully relativistic. In contrast to other models that have been proposed, this one involves no additional space-time structure as would be provided by a (possibly dynamical) foliation of space-time. This is achieved through the interplay of opposite microcausal and macrocausal (i.e., thermodynamic) arrows of time.Comment: 12 pages, 4 figures; v5: section headlines adde

    Trajectories and Particle Creation and Annihilation in Quantum Field Theory

    Get PDF
    We develop a theory based on Bohmian mechanics in which particle world lines can begin and end. Such a theory provides a realist description of creation and annihilation events and thus a further step towards a "beable-based" formulation of quantum field theory, as opposed to the usual "observable-based" formulation which is plagued by the conceptual difficulties--like the measurement problem--of quantum mechanics.Comment: 11 pages LaTeX, no figures; v2: references added and update

    Thermodynamic entropy production fluctuation in a two dimensional shear flow model

    Full text link
    We investigate fluctuations in the momentum flux across a surface perpendicular to the velocity gradient in a stationary shear flow maintained by either thermostated deterministic or by stochastic boundary conditions. In the deterministic system the Gallavotti-Cohen (GC)relation for the probability of large deviations, which holds for the phase space volume contraction giving the Gibbs ensemble entropy production, never seems to hold for the flux which gives the hydrodynamic entropy production. In the stochastic case the GC relation is found to hold for the total flux, as predicted by extensions of the GC theorem but not for the flux across part of the surface. The latter appear to satisfy a modified GC relation. Similar results are obtained for the heat flux in a steady state produced by stochastic boundaries at different temperatures.Comment: 9 postscript figure

    Investigation of land use of northern megalopolis using ERTS-1 imagery

    Get PDF
    Primary objective was to produce a color-coded land use map and digital data base for the northern third of Megalopolis. Secondary objective was to investigate possible applications of ERTS products to land use planning. Many of the materials in this report already have received national, dissemination as a result of unexpected interest in land use surveys from ERTS. Of special historical interest is the first comprehensive urban-type land use map from space imagery, which covered the entire state of Rhode Island and was made from a single image taken on 28 July 1972

    Development of optimum clamp combinations for strap-down inertial measuring units with field replaceable sensors

    Get PDF
    Optimum clamp combinations for strap down inertial measuring units with field replaceable sensor
    • …