25,425 research outputs found

    Engineering management of large scale systems

    Get PDF
    The organization of high technology and engineering problem solving, has given rise to an emerging concept. Reasoning principles for integrating traditional engineering problem solving with system theory, management sciences, behavioral decision theory, and planning and design approaches can be incorporated into a methodological approach to solving problems with a long range perspective. Long range planning has a great potential to improve productivity by using a systematic and organized approach. Thus, efficiency and cost effectiveness are the driving forces in promoting the organization of engineering problems. Aspects of systems engineering that provide an understanding of management of large scale systems are broadly covered here. Due to the focus and application of research, other significant factors (e.g., human behavior, decision making, etc.) are not emphasized but are considered

    Suggested criteria for evaluating systems engineering methodologies

    Get PDF
    Systems engineering is the application of mathematical and scientific principles to practical ends in the life-cycle of a system. A methodology for systems engineering is a carefully developed, relatively complex procedure or process for applying these mathematical and scientific principles. There are many systems engineering methodologies (or possibly many versions of a few methodologies) currently in use in government and industry. These methodologies are usually designed to meet the needs of a particular organization. It has been observed, however, that many technical and non-technical problems arise when inadequate systems engineering methodologies are applied by organizations to their systems development projects. Various criteria for evaluating systems engineering methodologies are discussed. Such criteria are developed to assist methodology-users in identifying and selecting methodologies that best fit the needs of the organization

    NCC Simulation Model: Simulating the operations of the network control center, phase 2

    Get PDF
    The simulation of the network control center (NCC) is in the second phase of development. This phase seeks to further develop the work performed in phase one. Phase one concentrated on the computer systems and interconnecting network. The focus of phase two will be the implementation of the network message dialogues and the resources controlled by the NCC. These resources are requested, initiated, monitored and analyzed via network messages. In the NCC network messages are presented in the form of packets that are routed across the network. These packets are generated, encoded, decoded and processed by the network host processors that generate and service the message traffic on the network that connects these hosts. As a result, the message traffic is used to characterize the work done by the NCC and the connected network. Phase one of the model development represented the NCC as a network of bi-directional single server queues and message generating sources. The generators represented the external segment processors. The served based queues represented the host processors. The NCC model consists of the internal and external processors which generate message traffic on the network that links these hosts. To fully realize the objective of phase two it is necessary to identify and model the processes in each internal processor. These processes live in the operating system of the internal host computers and handle tasks such as high speed message exchanging, ISN and NFE interface, event monitoring, network monitoring, and message logging. Inter process communication is achieved through the operating system facilities. The overall performance of the host is determined by its ability to service messages generated by both internal and external processors

    The effects of acceleration stress on human workload and manual control

    Get PDF
    The effects of +Gz stress on operator task performance and workload were assessed. Subjects were presented a two dimensional maze and were required to solve it as rapidly as possible (by moving a light dot through it via a trim switch on a control stick) while under G-stress at levels from +1 Gz to +6 Gz. The G-stress was provided by a human centrifuge. The effects of this stress were assessed by two techniques; (1) objective performance measures on the primary maze-solving task, and (2) subjective workload measures obtained using the subjective workload assessment technique (SWAT). It was found that while neither moderate (+3 Gz) nor high (+5 Gz and +6 Gz) levels of G-stress affected maze solving performance, the high G levels did increase significantly the subjective workload of the maze task

    A dynamic systems engineering methodology research study. Phase 2: Evaluating methodologies, tools, and techniques for applicability to NASA's systems projects

    Get PDF
    A study of NASA's Systems Management Policy (SMP) concluded that the primary methodology being used by the Mission Operations and Data Systems Directorate and its subordinate, the Networks Division, is very effective. Still some unmet needs were identified. This study involved evaluating methodologies, tools, and techniques with the potential for resolving the previously identified deficiencies. Six preselected methodologies being used by other organizations with similar development problems were studied. The study revealed a wide range of significant differences in structure. Each system had some strengths but none will satisfy all of the needs of the Networks Division. Areas for improvement of the methodology being used by the Networks Division are listed with recommendations for specific action

    Consumo voluntário: fatores relacionados com a degradação e passagem da forragem pelo rúmen.

    Get PDF
    Digestão a nível de rúmen. Dinâmica da passagem.bitstream/item/104713/1/Consumo-voluntario-fatores.pd

    Unique Mass Texture for Quarks and Leptons

    Get PDF
    Texture specific quark mass matrices which are hermitian and hierarchical are examined in detail . In the case of texture 6 zeros matrices, out of sixteen possibilities examined by us, none is able to fit the low energy data (LED), for example, Vus=0.2196±0.0023V_{us} = 0.2196 \pm 0.0023, Vcb=0.0395±0.0017V_{cb} = 0.0395 \pm 0.0017, VubVcb=0.08±0.02\frac{V_{ub}}{V_{cb}} = 0.08 \pm 0.02, VtdV_{td} lies in the range 0.004−0.0130.004 - 0.013 (PDG). Similarly none of the 32 texture 5 zeros mass matrices considered is able to reproduce LED. In particular, the latest data from LEP regarding ∣Vub∣/∣Vcb∣(=0.093±0.016)|V_{ub}|/|V_{cb}|(=0.093\pm0.016) rules out all of them. In the texture 4 zeros case, we find that there is a unique texture structure for UU and DD mass matrices which is able to fit the data.Comment: 12 pages, LaTeX,some changes in the references,minor changes in the text,to appear in Phys Rev D(Rapid communications
    • …