1,296 research outputs found

    SARS-CoV-2 omicron (B.1.1.529)-related COVID-19 sequelae in vaccinated and unvaccinated patients with cancer: results from the OnCovid registry

    No full text
    Background: COVID-19 sequelae can affect about 15% of patients with cancer who survive the acute phase of SARS-CoV-2 infection and can substantially impair their survival and continuity of oncological care. We aimed to investigate whether previous immunisation affects long-term sequelae in the context of evolving variants of concern of SARS-CoV-2. Methods: OnCovid is an active registry that includes patients aged 18 years or older from 37 institutions across Belgium, France, Germany, Italy, Spain, and the UK with a laboratory-confirmed diagnosis of COVID-19 and a history of solid or haematological malignancy, either active or in remission, followed up from COVID-19 diagnosis until death. We evaluated the prevalence of COVID-19 sequelae in patients who survived COVID-19 and underwent a formal clinical reassessment, categorising infection according to the date of diagnosis as the omicron (B.1.1.529) phase from Dec 15, 2021, to Jan 31, 2022; the alpha (B.1.1.7)–delta (B.1.617.2) phase from Dec 1, 2020, to Dec 14, 2021; and the pre-vaccination phase from Feb 27 to Nov 30, 2020. The prevalence of overall COVID-19 sequelae was compared according to SARS-CoV-2 immunisation status and in relation to post-COVID-19 survival and resumption of systemic anticancer therapy. This study is registered with ClinicalTrials.gov, NCT04393974. Findings: At the follow-up update on June 20, 2022, 1909 eligible patients, evaluated after a median of 39 days (IQR 24–68) from COVID-19 diagnosis, were included (964 [50·7%] of 1902 patients with sex data were female and 938 [49·3%] were male). Overall, 317 (16·6%; 95% CI 14·8–18·5) of 1909 patients had at least one sequela from COVID-19 at the first oncological reassessment. The prevalence of COVID-19 sequelae was highest in the pre-vaccination phase (191 [19·1%; 95% CI 16·4–22·0] of 1000 patients). The prevalence was similar in the alpha–delta phase (110 [16·8%; 13·8–20·3] of 653 patients, p=0·24), but significantly lower in the omicron phase (16 [6·2%; 3·5–10·2] of 256 patients, p<0·0001). In the alpha–delta phase, 84 (18·3%; 95% CI 14·6–22·7) of 458 unvaccinated patients and three (9·4%; 1·9–27·3) of 32 unvaccinated patients in the omicron phase had sequelae. Patients who received a booster and those who received two vaccine doses had a significantly lower prevalence of overall COVID-19 sequelae than unvaccinated or partially vaccinated patients (ten [7·4%; 95% CI 3·5–13·5] of 136 boosted patients, 18 [9·8%; 5·8–15·5] of 183 patients who had two vaccine doses vs 277 [18·5%; 16·5–20·9] of 1489 unvaccinated patients, p=0·0001), respiratory sequelae (six [4·4%; 1·6–9·6], 11 [6·0%; 3·0–10·7] vs 148 [9·9%; 8·4–11·6], p=0·030), and prolonged fatigue (three [2·2%; 0·1–6·4], ten [5·4%; 2·6–10·0] vs 115 [7·7%; 6·3–9·3], p=0·037). Interpretation: Unvaccinated patients with cancer remain highly vulnerable to COVID-19 sequelae irrespective of viral strain. This study confirms the role of previous SARS-CoV-2 immunisation as an effective measure to protect patients from COVID-19 sequelae, disruption of therapy, and ensuing mortality. Funding: UK National Institute for Health and Care Research Imperial Biomedical Research Centre and the Cancer Treatment and Research Trust

    Prior immune checkpoint inhibitor (ICI) therapy is associated with decreased COVID-19-related hospitalizations and complications in patients with cancer: Results of a propensity-matched analysis of the OnCovid registry

    No full text
    Objectives: To date, studies have not provided definitive answers regarding whether previous immune checkpoint inhibitor (ICI) treatment alters outcomes for cancer patients with COVID-19. Methods: The OnCovid registry (NCT04393974) was searched from February 27, 2020, to January 31, 2022, for patients who received systemic anti-cancer therapy in the 4 weeks before laboratory-confirmed COVID-19 diagnosis. Propensity-score matching using country, vaccination status, primary tumor type, sex, age, comorbidity burden, tumor stage, and remission status investigated differences in predefined clinical outcomes comparing those who had or had not received ICIs. Results: Of 3523 patients screened, 137 ICI-only and 1378 non-ICI met inclusion criteria. Before matching, ICI patients were older, male, enrolled at centers in Italy, and had histories of smoking, thoracic cancers, advanced cancer stages, and active malignancies (P ≤0.02). After matching, there were 120 ICI and 322 non-ICI patients. ICI patients had no differences (odds ratio: 95% CI) in presenting COVID-19 symptoms (0.69: 0.37-1.28), receipt of COVID-specific therapy (0.88: 0.54-1.41), 14-day (0.95: 0.56-1.61), or 28-day (0.79: 0.48-1.29) mortalities. However, ICI patients required less COVID-19-related hospitalization (0.37: 0.21-0.67) and oxygen therapy (0.51: 0.31-0.83) and developed fewer complications (0.57: 0.36-0.92). Conclusion: In this propensity-score matched analysis, previous ICI therapy did not worsen and potentially improved COVID-19 outcomes in patients with cancer

    Patients' preferences for chronic lymphocytic leukemia treatment: The CHOICE study

    No full text
    Chronic lymphocytic leukemia (CLL) therapies differ in efficacy, side effects, route, frequency, and duration of administration. We assessed patient preferences for treatment attributes and evaluated associations with disease stage, treatment line, and socio-demographic characteristics in a cross sectional, observational study conducted at 16 Italian hematology centers. Study visits occurred between February and July 2020; 401 adult patients with CLL (201 Watch and Wait (W&W), 200 treated) participated in a discrete choice experiment (DCE), composed of 8 choices between pairs of treatment profiles with different levels of 5 attributes of currently available CLL treatments (length of response, route and duration of administration, risk of side effects including diarrhea, infections, or organ damage). Health-related quality of life was assessed with the EQ-5D-5L, EORTC QLQ-C30 and QLQ CLL-16. Previously treated patients had longer disease duration (7 vs. 5 years), higher prevalence of serious comorbidities (45.5% vs. 36.2%) and high-risk molecular markers (unmutated IGHV 55.6% vs. 17.1%; TP53 mutation 15.2% vs. 4.0%). Health-related quality of life scores were similar between groups. In the DCE, W&W patients rated “possible occurrence of infections” highest (relative importance [RI] = 36.2%), followed by “treatment and relevant duration” (RI = 28.0%) and “progression-free survival (PFS)” (RI = 16.9%). Previously treated patients rated “treatment and relevant duration” highest (RI = 33.3%), followed by “possible occurrence of infections” (RI = 28.8%), “possible occurrence of organ damage” (RI = 19.4%), and “PFS” (RI = 9.8%). Concern over infection was rated highest overall; unexpectedly PFS was not among the most important criteria in either group, suggesting that the first COVID-19 pandemic wave may have influenced patient preferences and concerns about CLL therapy options

    SARS-CoV-2 omicron (B.1.1.529)-related COVID-19 sequelae in vaccinated and unvaccinated patients with cancer: results from the OnCovid registry

    Get PDF
    BACKGROUND: COVID-19 sequelae can affect about 15% of patients with cancer who survive the acute phase of SARS-CoV-2 infection and can substantially impair their survival and continuity of oncological care. We aimed to investigate whether previous immunisation affects long-term sequelae in the context of evolving variants of concern of SARS-CoV-2. METHODS: OnCovid is an active registry that includes patients aged 18 years or older from 37 institutions across Belgium, France, Germany, Italy, Spain, and the UK with a laboratory-confirmed diagnosis of COVID-19 and a history of solid or haematological malignancy, either active or in remission, followed up from COVID-19 diagnosis until death. We evaluated the prevalence of COVID-19 sequelae in patients who survived COVID-19 and underwent a formal clinical reassessment, categorising infection according to the date of diagnosis as the omicron (B.1.1.529) phase from Dec 15, 2021, to Jan 31, 2022; the alpha (B.1.1.7)-delta (B.1.617.2) phase from Dec 1, 2020, to Dec 14, 2021; and the pre-vaccination phase from Feb 27 to Nov 30, 2020. The prevalence of overall COVID-19 sequelae was compared according to SARS-CoV-2 immunisation status and in relation to post-COVID-19 survival and resumption of systemic anticancer therapy. This study is registered with ClinicalTrials.gov, NCT04393974. FINDINGS: At the follow-up update on June 20, 2022, 1909 eligible patients, evaluated after a median of 39 days (IQR 24-68) from COVID-19 diagnosis, were included (964 [50·7%] of 1902 patients with sex data were female and 938 [49·3%] were male). Overall, 317 (16·6%; 95% CI 14·8-18·5) of 1909 patients had at least one sequela from COVID-19 at the first oncological reassessment. The prevalence of COVID-19 sequelae was highest in the pre-vaccination phase (191 [19·1%; 95% CI 16·4-22·0] of 1000 patients). The prevalence was similar in the alpha-delta phase (110 [16·8%; 13·8-20·3] of 653 patients, p=0·24), but significantly lower in the omicron phase (16 [6·2%; 3·5-10·2] of 256 patients, p<0·0001). In the alpha-delta phase, 84 (18·3%; 95% CI 14·6-22·7) of 458 unvaccinated patients and three (9·4%; 1·9-27·3) of 32 unvaccinated patients in the omicron phase had sequelae. Patients who received a booster and those who received two vaccine doses had a significantly lower prevalence of overall COVID-19 sequelae than unvaccinated or partially vaccinated patients (ten [7·4%; 95% CI 3·5-13·5] of 136 boosted patients, 18 [9·8%; 5·8-15·5] of 183 patients who had two vaccine doses vs 277 [18·5%; 16·5-20·9] of 1489 unvaccinated patients, p=0·0001), respiratory sequelae (six [4·4%; 1·6-9·6], 11 [6·0%; 3·0-10·7] vs 148 [9·9%; 8·4-11·6], p=0·030), and prolonged fatigue (three [2·2%; 0·1-6·4], ten [5·4%; 2·6-10·0] vs 115 [7·7%; 6·3-9·3], p=0·037). INTERPRETATION: Unvaccinated patients with cancer remain highly vulnerable to COVID-19 sequelae irrespective of viral strain. This study confirms the role of previous SARS-CoV-2 immunisation as an effective measure to protect patients from COVID-19 sequelae, disruption of therapy, and ensuing mortality. FUNDING: UK National Institute for Health and Care Research Imperial Biomedical Research Centre and the Cancer Treatment and Research Trust

    Surprising discriminating power of intracellular markers detected by flow cytometry in lymphoma diagnosis unveiled by artificial intelligence techniques

    No full text
    Introduction: In a previous study, we demonstrated that Artificial Intelligence (AI), applied to a wide case series of mature B-cells Leukemia and Lymphomas (B-NHL), allows us to define homogeneous groups of neoplasms characterized by the expression of one or more surface markers. Using additional intracellular markers on a series of tissue samples from B-NHL patients, and applying a more articulated system of analysis, we investigated whether we could obtain an AI based classification and estimate which markers are more specific to differentiate Lymphoma groups. Methods: We collected phenotypic analysis of 615 biopsy samples, whose diagnoses, all confirmed by histological analysis, were grouped in 8 major categories of B-NHL. Leveraging the Predictive Power Score, we evaluated the predictive performance of each individual marker against all lymphoma categories. Among all, we identified 10 markers strongly correlated with the diagnosis. We further validated the role of these markers by combining them in a classification tree. Here, each marker is analyzed in combination with all the others leading to a structural relationship tree that separates the entire database in quasi-homogeneous groups of lymphomas. Finally, using the Uniform Manifold Approximation and Projection (UMAP) dimensionality reduction technique, we observed that the 8 lymphoma categories were substantially grouped and separated in clusters. Results: The results obtained demonstrate how the use of surface and intracellular markers allows us to define the major categories of B-NHL with a high degree of accuracy. Ten or less markers seem to be sufficient to achieve an adequate classification capability. Nevertheless, a greater number of markers, combining intracellular with unconventional markers (CD305, CD81), increases the ability of UMAP to separate different entities. Conclusions: It is conceivable that the implementation of AI applied to multiparametric flow cytometry (MFC) could contribute significantly to an optimal diagnostic process in B-NHL, where histopathological examination remains the gold standard. It is still being investigated whether the use of these methods with a large number of markers can also be predictive of categories of neoplasms carrying molecular or genetic alterations, which would be useful for a better classification even for therapeutic purposes of B-NHL

    Different prognostic impact of recurrent gene mutations in chronic lymphocytic leukemia depending on IGHV gene somatic hypermutation status: a study by ERIC in HARMONY

    Get PDF
    Recent evidence suggests that the prognostic impact of gene mutations in patients with chronic lymphocytic leukemia (CLL) may differ depending on the immunoglobulin heavy variable (IGHV) gene somatic hypermutation (SHM) status. In this study, we assessed the impact of nine recurrently mutated genes (BIRC3, EGR2, MYD88, NFKBIE, NOTCH1, POT1, SF3B1, TP53, and XPO1) in pre-treatment samples from 4580 patients with CLL, using time-to-first-treatment (TTFT) as the primary end-point in relation to IGHV gene SHM status. Mutations were detected in 1588 (34.7%) patients at frequencies ranging from 2.3-9.8% with mutations in NOTCH1 being the most frequent. In both univariate and multivariate analyses, mutations in all genes except MYD88 were associated with a significantly shorter TTFT. In multivariate analysis of Binet stage A patients, performed separately for IGHV-mutated (M-CLL) and unmutated CLL (U-CLL), a different spectrum of gene alterations independently predicted short TTFT within the two subgroups. While SF3B1 and XPO1 mutations were independent prognostic variables in both U-CLL and M-CLL, TP53, BIRC3 and EGR2 aberrations were significant predictors only in U-CLL, and NOTCH1 and NFKBIE only in M-CLL. Our findings underscore the need for a compartmentalized approach to identify high-risk patients, particularly among M-CLL patients, with potential implications for stratified management

    BTK and PLCG2 remain unmutated in one-third of patients with CLL relapsing on ibrutinib

    No full text
    Patients with chronic lymphocytic leukemia (CLL) progressing on ibrutinib constitute an unmet need. Though Bruton tyrosine kinase (BTK) and PLCG2 mutations are associated with ibrutinib resistance, their frequency and relevance to progression are not fully understood. In this multicenter retrospective observational study, we analyzed 98 patients with CLL on ibrutinib (49 relapsing after an initial response and 49 still responding after ≥1 year of continuous treatment) using a next-generation sequencing (NGS) panel (1% sensitivity) comprising 13 CLL-relevant genes including BTK and PLCG2. BTK hotspot mutations were validated by droplet digital polymerase chain reaction (ddPCR) (0.1% sensitivity). By integrating NGS and ddPCR results, 32 of 49 relapsing cases (65%) carried at least 1 hotspot BTK and/or PLCG2 mutation(s); in 6 of 32, BTK mutations were only detected by ddPCR (variant allele frequency [VAF] 0.1% to 1.2%). BTK/PLCG2 mutations were also identified in 6 of 49 responding patients (12%; 5/6 VAF <10%), of whom 2 progressed later. Among the relapsing patients, the BTK-mutated (BTKmut) group was enriched for EGR2 mutations, whereas BTK-wildtype (BTKwt) cases more frequently displayed BIRC3 and NFKBIE mutations. Using an extended capture-based panel, only BRAF and IKZF3 mutations showed a predominance in relapsing cases, who were enriched for del(8p) (n = 11; 3 BTKwt). Finally, no difference in TP53 mutation burden was observed between BTKmut and BTKwt relapsing cases, and ibrutinib treatment did not favor selection of TP53-aberrant clones. In conclusion, we show that BTK/PLCG2 mutations were absent in a substantial fraction (35%) of a real-world cohort failing ibrutinib, and propose additional mechanisms contributing to resistance

    10-day decitabine versus 3 + 7 chemotherapy followed by allografting in older patients with acute myeloid leukaemia: an open-label, randomised, controlled, phase 3 trial

    No full text
    Background: Many older patients with acute myeloid leukaemia die or cannot undergo allogeneic haematopoietic stem-cell transplantation (HSCT) due to toxicity caused by intensive chemotherapy. We hypothesised that replacing intensive chemotherapy with decitabine monotherapy could improve outcomes. Methods: This open-label, randomised, controlled, phase 3 trial was conducted at 54 hospitals in nine European countries. Patients aged 60 years and older who were newly diagnosed with acute myeloid leukaemia and had not yet been treated were enrolled if they had an Eastern Cooperative Oncology Group performance status of 2 or less and were eligible for intensive chemotherapy. Patients were randomly assigned (1:1) to receive decitabine or standard chemotherapy (known as 3 + 7). For the decitabine group, decitabine (20 mg/m2) was administered for the first 10 days in the first 28-day cycle, followed by 28-day cycles consisting of 5 days or 10 days of decitabine. For the 3 + 7 group, daunorubicin (60 mg/m2) was administered over the first 3 days and cytarabine (200 mg/m2) over the first 7 days, followed by 1–3 additional chemotherapy cycles. Allogeneic HSCT was strongly encouraged. Overall survival in the intention-to-treat population was the primary endpoint. Safety was assessed in all patients who received the allocated treatment. This trial is registered at ClinicalTrials.gov, NCT02172872, and is closed to new participants. Findings: Between Dec 1, 2014, and Aug 20, 2019, 606 patients were randomly assigned to the decitabine (n=303) or 3 + 7 (n=303) group. Following an interim analysis which showed futility, the IDMC recommended on May 22, 2019, that the study continued as planned considering the risks and benefits for the patients participating in the study. The cutoff date for the final analysis presented here was June 30, 2021. At a median follow-up of 4·0 years (IQR 2·9–4·8), 4-year overall survival was 26% (95% CI 21–32) in the decitabine group versus 30% (24–35) in the 3 + 7 group (hazard ratio for death 1·04 [95% CI 0·86–1·26]; p=0·68). Rates of on-protocol allogeneic HSCT were similar between groups (122 [40%] of 303 patients for decitabine and 118 [39%] of 303 patients for 3+7). Rates of grade 3–5 adverse events were 254 (84%) of 302 patients in the decitabine group and 279 (94%) of 298 patients in the 3 + 7 group. The rates of grade 3–5 infections (41% [125 of 302] vs 53% [158 of 298]), oral mucositis (2% [seven of 302] vs 10% [31 of 298]) and diarrhoea (1% [three of 302] vs 8% [24 of 298]) were lower in the decitabine group than in the 3 + 7 group. Treatment-related deaths were reported for 12% (35 of 302) of patients in the decitabine group and 14% (41 of 298) in the 3 + 7 group. Interpretation: 10-day decitabine did not improve overall survival but showed a better safety profile compared with 3 + 7 chemotherapy in older patients with acute myeloid leukaemia eligible for intensive chemotherapy. Decitabine could be considered a better-tolerated and sufficiently efficacious alternative to 3 + 7 induction in fit older patients with acute myeloid leukaemia without favourable genetics. Funding: Janssen Pharmaceuticals
    corecore